Skip to main content
Log in

Glucose biosensors based on oxygen electrode with sandwich-type membranes

  • Methods and Technology
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript


A glucose biosensor based on an amperometric oxygen electrode has been developed. Polycarbonate and Silastic membranes were assembled (glued together) to form a multilayer sandwich glucose diffusion barrier. The effects of the glue layer composition and thickness of the Silastic membrane on sensor response parameters have been investigated in order to optimize the sensor. The parameters measured were the sensitivity, the concentration range of the linear dependence of the sensor response to glucose, and the long-term operation time. The sensors with the sandwich-type glucose diffusion membrane (Silastic membrane prepared from 20% Silastic suspension, glue layer prepared from polyurethane, 0.5 w/v % in THF solution and standard polycarbonate membrane) demonstrated linearity of response up to 520 mg/dl glucose at 25°C and up to 400 mg/dl at 37°C. These sensor showed good reproducibility of response without significant interference effects (from 1 to 5% of the background current value). The long-term continuous operational time of the sensors was over 40 days at 37°C, and over 60 days at 25°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Armour, J. C., J. Y. Lucisano, B. D. McKean, and D. A. Gough. Application of chronic intravascular blood glucose sensor in dogs.Diabetes 39:1519–1530, 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Atanasov, P., and E. Wilkins. Glucose biosensor based on oxygen electrode. Part I: silastic coated polycarbonate membranes for biosensor application.Anal. Lett. 28:1587–1612, 1993.

    Google Scholar 

  3. Atanasov, P., and E. Wilkins. Glucose biosensor based on oxygen electrode. Part II: long term operational stability of the rechargeable glucose biosensor.Anal. Lett. 26:2027–2094, 1993.

    Google Scholar 

  4. Bindra, D. S., Y. Zhang, G. S. Wilson, R. Sternberg, D. R. Thevenot, D. Moatti and G. Reach. Design andin vitro studies of a needle-type glucose sensor for subcutaneous monitoring.Anal. Chem. 63:1692–1696, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, C. Y., M. Gotoh, H. Makino, Y. C. Su, E. Tamia, and I. Karube. Amperometric needle-type glucose sensor based on a modified platinum electrode with diminished response to interfering materials.Anal. Chim. Acta. 265:5–14, 1992.

    Article  CAS  Google Scholar 

  6. Ertefai, S., and D. A. Gough, Physiological preparation for studying the response of subcutaneously implanted glucose and oxygen sensors.J. Biomed. Eng. 11:362–368, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Gorton, L. Carbon paste electrodes modified with enzymes, tissues and cells.Electroanalysis 7:23–45, 1995.

    Article  CAS  Google Scholar 

  8. Lowey, P. J., K. McAteer, S. S. Atrash, A. Duff, and R. D. O'Neill. Characterization of glucose oxidase-modified poly(phenylenediamine)-coated electrodesin vitro andin vivo: homogeneous interference by ascorbic acid in hydrogen peroxide detection.Anal. Chem. 66:1754–1761, 1994.

    Article  Google Scholar 

  9. Lucisano, J. Y., J. C. Armour, and D. A. Gough.In vitro stability of an oxygen sensor.Anal. Chem. 59:736–739, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Moatti-Sirat, D., F. Copron, V. Poitoout, G. Reach, D. S. Bindra, Y. Zhang, G. S. Wilson, and D. R. Thevenot. Towards continuous glucose monitoring:in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue.Diabetologia 35:224–230, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Oberhardt, B., E. Fogt, and A. Clemens. Glucose sensor characteristics for miniaturized portable closed-loop insulin delivery.Diabetes Care 5:231–271, 1982.

    Article  Google Scholar 

  12. Turner, A. P. F., I. Karube, and G. S. Wilson.Biosensors: Fundamentals and Applications. Oxford: Oxford University Press, 1987, 770 pp.

    Google Scholar 

  13. Turner, A. P. F., and J. C. Pickup. Diabetes mellitus: biosensors for research and management.Biosensors 1:85–115, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Vauya, R., and E. Wilkins. The use of polycarbonate membranes coated with charged polymers to reduce the interference effect on glucose measurements.Biomed. Instrum. Technol. 27:486–494, 1993.

    Google Scholar 

  15. Waldhausel, W. K. The physiological basis of insulin treatment-clinical aspects.Diabetologia 29:837–849, 1986.

    Article  Google Scholar 

  16. Wilkins, E. A rechargeable glucose sensor-long term activity and performance.Biomed. Instrum. Technol. 27:325–333, 1993.

    PubMed  CAS  Google Scholar 

  17. Xie, S. L., and E. Wilkins. Rechargeable glucose electrode for long-term implantation.J. Biomed. Eng. 13:375–378, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Xie, S. L., E. Wilkins, and P. Atanasov. Towards an implantable and refillable glucose sensor based on oxygen electrode principles.Sensors Actuators B 17:133–142, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Atanasov, P. & Wilkins, E. Glucose biosensors based on oxygen electrode with sandwich-type membranes. Ann Biomed Eng 23, 833–839 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: