Skip to main content
Log in

Physical measurements of bilayer-skeletal separation forces

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bilayer membranes are intrinsically fluid in character and require stabilization by association with an underlying cytoskeleton. Instability either in the membrane-associated cytoskeleton or in the association between the bilayer and the skeleton can lead to loss of membrane bilayer and premature cell death. In this report measurements of the physical strength of the association between membrane bilayer and the membrane-associated skeleton in red blood cells are reported. These measurements involve the mechanical formation of long, thin cylinders of membrane bilayer (tethers) from the red cell surface. ultrastructural evidence is presented indicating that these tethers do not contain membrane skeleton and, furthermore, that they are deficient in at least some integral membrane proteins. By measuring the forces on the cell as the tether is formed and the dimensions of the tether, the energy associated with its formation can be calculated. The minimum force to form a tether was found to be ≈50 pN corresponding to an energy of dissociation of 0.2–0.3 mJ/m2. Such measurements enable critical evaluation of potential physical mechanisms for the stabilization of the membrane bilayer by the underlying cytoskeleton. It is postulated that an important contribution to the energy of association between bilayer and skeleton comes from the increase in chemical potential due to the lateral segregation of lipids and integral proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agre, P., J. F. Casella, W. H. Zinkham, C. McMillan, and V. Bennett. Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis.N. Engl. J. Med. 315:1579–1583, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Berk, D. A., and R. M. Hochmuth. Lateral mobility of integral proteins in red blood cell tethers.Biophys. J. 61:9–18, 1992.

    PubMed  CAS  Google Scholar 

  3. Bozic, B., S. Svetina, B. Zeks, and R. E. Waugh. Role of lamellar membrane structure in tether formation from bilayer vesicles.Biophys. J. 61:963–973, 1992.

    PubMed  CAS  Google Scholar 

  4. Chasis, J. A., P. Agre, and N. Mohandas. Decreased mechanical stability and in vivo loss of surface area reflect spectrin deficiencies in hereditary spherocytosis.J. Clin. Invest. 82:617–623, 1988.

    PubMed  CAS  Google Scholar 

  5. Cobb, C. E., and A. H. Beth Identification of the eosinyl-5-maleimide reaction site on the human erythrocyte anion exchange protein: Overlap with the reaction sites of other chemical probes.Biochemistry 29:8283–8290, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen, C. M. The molecular organization of the red cell membrane skeleton.Semin. Hematol. 20:141–158, 1983.

    PubMed  CAS  Google Scholar 

  7. Connor, J., C. H. Pak, R. F. A. Zwaal, and A. J. Schroit. Bidirectional transbilayer movement of phospholipid analogs in human red blood cells—evidence for an ATP-dependent and protein-mediated process.J. Biol. Chem. 267:19412–19417, 1992.

    PubMed  CAS  Google Scholar 

  8. Davis, L. H., and V. Bennett. Mapping the binding sites of human erythrocytes ankyrin for the anion exchanger and spectrin.J. Biol. Chem. 265:10589–10596, 1990.

    PubMed  CAS  Google Scholar 

  9. Evans, E. A. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells.Biophys. J. 30:265–284, 1980.

    PubMed  CAS  Google Scholar 

  10. Evans, E. A. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests.Biophys. J. 43:27–30, 1983.

    PubMed  CAS  Google Scholar 

  11. Gilligan, D. M., and V. Bennett. The junctional complex of the membrane skeleton.Semin. Hematol. 30:74–83, 1993.

    PubMed  CAS  Google Scholar 

  12. Goldman, A. J., R. G. Cox, and H. Brenner. Slow viscous motion of a sphere parallel to a plane wall: II. Couette flow.Chem. Eng. Sci. 22:653–660, 1967.

    Article  CAS  Google Scholar 

  13. Hochmuth, R. M., and E. A. Evans. Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis.Biophys. J. 39:71–81, 1982.

    PubMed  CAS  Google Scholar 

  14. Hochmuth, R. M., E. A. Evans, and D. F. Colvard. Viscosity of human red cell membrane in plastic flow.Microvasc. Res. 11:155–159, 1976.

    Article  PubMed  CAS  Google Scholar 

  15. Hochmuth, R. M., N. Mohandas, and P. L. Blackshear. Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique.Biophys. J. 13:747–762, 1973.

    PubMed  CAS  Google Scholar 

  16. Hyman, W. A. Shear flow over a protrusion from a plane wall.J. Biomech. 5:45–48, 1972.

    Article  PubMed  CAS  Google Scholar 

  17. Katnik, C., and R. Waugh. Alterations of the apparent area expansively modulus of red blood cell membrane by electric fields.Biophys. J. 57:877–882, 1990.

    PubMed  CAS  Google Scholar 

  18. Lange, Y., J. Dolde, and T. Steck. The rate of transmembrane movement of cholesterol in the human erythrocyte.J. Biol. Chem. 256:5321–5323, 1981.

    PubMed  CAS  Google Scholar 

  19. Liu, S. C., L. H. Derick, S. Zhai, and J. Palek. Uncoupling of the spectrin based skeleton from the lipid bilayer in sickled red cells.Science 252:574–576, 1992.

    Article  Google Scholar 

  20. Low, P. S. Structure and function of the cytoplasmic domain of band 3: Center of erythrocyte membrane-peripheral protein interactions.Biochim. Biophys. Acta 864:145–167, 1986.

    PubMed  CAS  Google Scholar 

  21. Luna, E. J., and A. L. Hitt. Cytoskeleton plasma membrane interactions.Science 258:955–963, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Mohandas, N., and J. A. Chasis. Red blood cell deformability, membrane material properties and shape—regulation by transmembrane, skeletal and cytosolic proteins and lipids.Semin. Hematol. 30:171–192, 1993.

    PubMed  CAS  Google Scholar 

  23. Pinder, J. C., A. Chung, M. E. Reid, and W. B. Gratzer. Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell.Blood 82:3482–3488, 1993.

    PubMed  CAS  Google Scholar 

  24. Reid, M. E., Y. Takakuwa, J. Conboy, G. Tchernia, and N. Mohandas. Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1.Blood 75:2229–2234, 1990.

    PubMed  CAS  Google Scholar 

  25. Takakuwa, Y., G. Tchernia, M. Rossi, M. Benabadji, and N. Mohandas. Restoration of normal membrane stability to unstable protein 4.1 deficient erythrocyte membranes by incorporation of purified protein 4.1.J. Clin. Invest. 78:80–85, 1992.

    Google Scholar 

  26. Waugh, R. E. Surface viscosity measurements from large bilayer vesicle tether formation. II. Experiments.Biophys. J. 38:29–37, 1982.

    PubMed  CAS  Google Scholar 

  27. Waugh, R. E. Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane.Biophys. J. 39:273–278, 1982.

    PubMed  CAS  Google Scholar 

  28. Waugh, R. E., and P. Agre. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis.J. Clin. Invest. 81:133–141, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Waugh, R. E., and R. M. Hochmuth. Mechanical equilibrium of thick hollow liquid membrane cylinders.Biophys. J. 52:391–400, 1987.

    PubMed  CAS  Google Scholar 

  30. Waugh, R. E., and P. L. LaCelle. Abnormalities in the membrane material properties of hereditary spherocytes.J. Biomech. Eng. 102:240–246, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Waugh, R. E., N. Mohandas, C. W. Jackson, T. J. Mueller, T. Suzuki, and G. L. Dale. Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age.Blood 79:1351–1358, 1992.

    PubMed  CAS  Google Scholar 

  32. Waugh, R. E., J. Song, S. Svetina, and B. Zeks. Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles.Biophys. J. 61:974–982, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waugh, R.E., Bauserman, R.G. Physical measurements of bilayer-skeletal separation forces. Ann Biomed Eng 23, 308–321 (1995). https://doi.org/10.1007/BF02584431

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584431

Keywords

Navigation