Skip to main content
Log in

Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (\(\dot W\)) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while\(\dot W\) was found to increase slowly with frequency above its optimum. In contrast, both\(\dot W\) and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the\(\dot W\) criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates, J.H.T.; Decramer, M.; Zin, W.A.; Harf, A.; Milic-Emili, J.; Chang, H.K. Respiratory resistance with histamine challenge by single-breath and forced oscillation methods. J. Appl. Physiol. 61:873–880; 1986.

    PubMed  CAS  Google Scholar 

  2. Bates, J.H.T.; Brown, K.A.; Kochi, T. Respiratory mechanics in the normal dog determined by expiratory flow interruption. J. Appl. Physiol. 67:2276–2285; 1989.

    PubMed  CAS  Google Scholar 

  3. Bates, J.H.T.; Shardonofsky, F.; Stewart, D.E. The low-frequency dependence of respiratory system resistance and elastance in normal dogs. Respir. Physiol. 78:369–382; 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Cala, S.J.; Wilcox, P.; Edyvean, J.; Rynn, M.; Engel, L.A. Oxygen cost of inspiratory loading: Resistive vs. elastic. J. Appl. Physiol. 70:1983–1990; 1991.

    PubMed  CAS  Google Scholar 

  5. D'Angelo, E.; Calderini, E.; Torri, G.; Robatto, F.M.; Bono, D.; Milic-Emili, J. Respiratory mechanics in anesthetized paralyzed humans: Effects of flow, volume, and time. J. Appl. Physiol. 67:2556–2564; 1989.

    PubMed  Google Scholar 

  6. Gray, J.S.; Grodins, F.S.; Carter, E.T. Alveolar and total ventilation and the dead space problem. J. Appl. Physiol. 9:307–320; 1956.

    PubMed  Google Scholar 

  7. Hantos, Z.; Daroczy, B.; Suki, B.; Galgoczy, G.; Csendes, T. Forced oscillatory impedance of the respiratory system at low frequencies. J. Appl. Physiol. 60:123–132, 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Lutchen, K.R.; Jackson, A.C. Effects of tidal volume and methacholine on low-frequency total respiratory impedance in dogs. J. Appl. Physiol. 68:2128–2138; 1990.

    PubMed  CAS  Google Scholar 

  9. Mead, J. Control of respiratory frequency. J. Appl. Physiol. 15:325–336; 1960.

    Google Scholar 

  10. Mount, L.E. Ventilation flow-resistance and compliance of rat lungs. J. Physiol. (Lond.) 127:157–167; 1955.

    CAS  Google Scholar 

  11. Otis, A.B.; Fenn, W.O.; Rahn, H. The mechanics of breathing in man. J. Appl. Physiol. 2:592–607; 1950.

    PubMed  CAS  Google Scholar 

  12. Rahn, H.; Otis, A.B.; Chadwick L.E.; Fenn, W.O. The pressure-volume diagram of the thorax and lungs. Am. J. Physiol. 146:161–178; 1946.

    Google Scholar 

  13. Rohrer, F. Physiologie der Atembewegung. In: Bethe, A.T.J.; von Bergmann, G.; Embden, G.; Ellinger, A., eds. Handbuch der normalen und pathologischen Physiologie, vol 2. Berlin: Springer-Verlag; 1925: pp. 70–127.

    Google Scholar 

  14. Roussos, Ch.; Campbell, E.J.M. Respiratory muscle energetics. In: Mead, J.; Macklem, P.T., eds. Handbook of physiology: Section 3, the respiratory system, vol III, parts 1 and 2: Mechanics of breathing. New York: Oxford University Press 1986: pp. 481–570.

    Google Scholar 

  15. Suki, B.; Peslin, R.; Duvivier, C.; Farre, R. Lung impedance in healthy humans measured by forced oscillations from 0.01 to 0.1 Hz. J. Appl. Physiol. 67:1623–1629; 1989.

    PubMed  CAS  Google Scholar 

  16. Yamashiro, S.M.; Grodins, F.S. Optimal regulation of respiratory airflow. J. Appl. Physiol. 30:597–602; 1971.

    PubMed  CAS  Google Scholar 

  17. Yamashiro, S.M.; Grodins, F.S. Respiratory cycle optimization in exercise. J. Appl. Physiol. 35:522–525; 1973.

    PubMed  CAS  Google Scholar 

  18. Yamashiro, S.M.; Daubenspeck, J.A.; Lauritsen, T.N.; Grodins, F.S. Total work rate of breathing optimization in CO2 inhalation and exercise. J. Appl. Physiol. 38:702–709; 1975.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, J.H.T., Milic-Emili, J. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency. Ann Biomed Eng 21, 489–499 (1993). https://doi.org/10.1007/BF02584331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584331

Keywords

Navigation