Skip to main content
Log in

Modeling human diaphragmatic electromyogram and airflow responses to imperceptible mechanical loads

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We used an esophageal electrode to measure the amplitude and timing responses of diaphragmatic electrical activity and airflow in response to flow resistive and elastic loads at or below the threshold for conscious detection, applied pseudorandomly to the oral airway of eight normal human subjects. The mechanical and neural parameter responses to mechanical loading were cross-correlated with the pseudorandom loading sequence to obtain estimates of the impulse responses. We convolved the resultant impulse response estimates with the loading sequence to obtain the responses predicted from the linear component of the generalized Wiener kernel model. Highly significant correlations and close correspondence were found between the model-predicted and ensemble-averaged experimental responses for nearly all neural and mechanical parameters in all subjects. For nearly every aspect of the pattern, with few exceptions, the response to these small load perturbations in all eight subjects was adequately explained by an impulse response, leaving negligible nonlinearity to require higher-order cross-correlations. These results indicate that the estimated impulse responses accurately model the dynamics of the neural and mechanical responses in human subjects for the types and magnitudes of loads applied. This study supports use of the pseudorandom loading technique to determine the neural and mechanical responses to imperceptible mechanical loads in conscious humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker, H.A.; Pradisthayon, T. High-order autocorrelation functions of pseudorandom signals based on M sequences. Proc. IEE 117:1857–1863; 1970.

    Google Scholar 

  2. Bennett, F.M.; Reischl, P.; Grodins, F.S.; Yamashiro, S.M.; Fordyce, W.E. Dynamics of ventilatory response to exercise in humans. J. Appl. Physiol. 51:194–203; 1981.

    PubMed  CAS  Google Scholar 

  3. Bloch, R. Subtraction of electrocardiographic signal from respiratory electromyogram. J. Appl. Physiol. 55:619–623; 1983.

    PubMed  CAS  Google Scholar 

  4. Bryant, H.J.; Abbrecht, P.H. Computer processing of phrenic neurograms. J. Appl. Physiol. 56:1126–1134; 1984.

    PubMed  CAS  Google Scholar 

  5. Daubenspeck, J.A. Ventilatory responses to elastic loading at constant PACO2 in hypercapnic hyperpnea. J. Appl. Physiol. 47:778–786; 1979.

    PubMed  CAS  Google Scholar 

  6. Daubenspeck, J.A.; Bennett, F.M. Immediate human breathing pattern responses to loads near the perceptual threshold. J. Appl. Physiol. 55:1160–1166; 1983.

    PubMed  CAS  Google Scholar 

  7. Daubenspeck, J.A.; Leiter, J.C.; McGovern, J.F.; Knuth, S.L.; Kobylarz, E.J. diaphragmatic electromyography using a multiple electrode array. J. Appl. Physiol. 67:1525–1534; 1989.

    PubMed  CAS  Google Scholar 

  8. Davies, W.D.T. Systems analysis for self-adaptive control. New York: Wiley; 1970.

    Google Scholar 

  9. Eysholdt, U.; Shreiner, C. Maximum length sequences — a fast method for measuring brain-stem-evoked responses. Audiology 21:242–250; 1982.

    PubMed  CAS  Google Scholar 

  10. Greco, E.C.; Baier, J.; Saez, A. Transient ventilatory and heart rate responses to moderate nonabrupt pseudorandom exercise. J. Appl. Physiol. 60:1524–1534; 1986.

    PubMed  CAS  Google Scholar 

  11. Harver, A.; Daubenspeck, J.A. Human breathing pattern responses to loading with increased background impedance. J. Appl. Physiol. 66:680–686; 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Kearney, R.E.; Hunter, I.W. Nonlinear identification of stretch reflex dynamics. Ann. Biomed. Eng. 16:79–94; 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Kobylarz, E.J. Diaphragmatic electromyogram and airflow responses to imperceptible mechanical loads in conscious humans. Hanover, NH: Thayer School of Engineering, Dartmouth College; 1991. Ph.D. thesis.

  14. Kobylarz E.J.; Daubenspeck, J.A. Immediate diaphragmatic electromyogram responses to imperceptible mechanical loads in conscious humans. J. Appl. Physiol. 73(1):248–259; 1992.

    PubMed  CAS  Google Scholar 

  15. Korenberg, M.J. Crosscorrelation analysis of neural cascades. In: 10th Annual Rocky Mountain Bioengineering Symposium; Colorado; 1973:pp. 47–51.

  16. Lee, Y.W.; Schetzen, M. Measurement of the Wiener kernels of a nonlinear system by cross-correlation. Int. J. Control 2:237–254; 1965.

    Google Scholar 

  17. Marmarelis, P.Z.; Marmarelis, V.Z. Analysis of physiological systems, the white noise approach. New York: Plenum; 1978.

    Google Scholar 

  18. Marmarelis, P.Z.; Naka, K.-I. White-noise analysis of a neuron chain: An application of the Wiener theory. Science 175:1276–1278; 1972.

    Article  PubMed  CAS  Google Scholar 

  19. Marmarelis, P.Z.; Naka, K.-I. Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. II. One-input white-noise analysis. J. Neurophysiol. 36:619–633; 1973.

    PubMed  CAS  Google Scholar 

  20. Marmarelis, P.Z.; Naka, K.-I. Identification of multi-input biological systems. IEEE Trans. Biomed. Eng. BME-21:88–101; 1974.

    Article  PubMed  CAS  Google Scholar 

  21. Marmarelis, V.Z. A family of quasi-white random signals and its optimal use in biological system identification. Biol. Cybernetics 27:49–62; 1977.

    Article  CAS  Google Scholar 

  22. Møller, A.R.; Angelo, R.M. Use of pseudorandom noise in studies of auditory evoked potentials. Ann. Biomed. Eng. 16:35–51; 1988.

    Article  PubMed  Google Scholar 

  23. O'Leary, D.P.; Honrubia, V. On-line identification of sensory systems using pseudorandom binary noise perturbations. Biophys. J. 15:505–532; 1975.

    Article  PubMed  Google Scholar 

  24. Paulin, M.G. Montgomery, J.C. Elasmobranch eye motor dynamics characterised using pseudorandom stimulus. J. Comp. Physiol A 158:723–728; 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Ponte, J.; Purves, M.J. Receptor dynamics using correlation techniques. Med. Biomed. Eng. Nov: 792–799; 1974.

  26. Schetzen, M. A theory of non-linear system identification. Int. J. Control 20:577–592; 1974.

    Google Scholar 

  27. Sohrab, S.; Yamashiro, S.M. Pseudorandom testing of ventilatory response to inspired carbon dioxide in man. J. Appl. Physiol. 49:1000–1009; 1980.

    PubMed  CAS  Google Scholar 

  28. Watanabe, A.; Stark, L. Kernel method for nonlinear analysis: Identification of a biological control system. Math. Biosci. 27:99–108; 1975.

    Article  Google Scholar 

  29. Wiener, N. Nonlinear problems in random theory. New York; Wiley; 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobylarz, E.J., Andrew Daubenspeck, J. Modeling human diaphragmatic electromyogram and airflow responses to imperceptible mechanical loads. Ann Biomed Eng 21, 475–488 (1993). https://doi.org/10.1007/BF02584330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584330

Keywords

Navigation