Skip to main content
Log in

Mathematical interrelationship between instantaneous ventricular pressure-volume ratio and myocardial force-velocity relation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The instantaneous left intraventricular pressure-volume ratio,e(t)= p(t)/[v(t)−v d], in whichp(t), v(t) andv d are intraventricular pressure, volume and a correction factor, respectively, was shown by our experimental studies to be independent of mechanical loading conditions and yet vary markedly with changes in contractile state of the ventricle. The studies also indicated that thee(t) curve under a given contractile state could be described ase(t)e ot), in whiche o(t) representse(t) under arbitrarily defined control contractile state and heart rate, and α and β are magnitude and duration parameters of the givene(t) with respect toe 0(t). The present mathematical analysis of mechanical relationship between ventricular performance represented bye(t) and myocardial contraction shows that the α and β parameters related to myocardial force,F, and shortening velocity of contractile element,V ce, respectively. Using a two-element model of myocardium and a thick-wall sphere or cylinder model of the ventricle we found thatF(t)He 0t) andV ce(t)=βK j[de 0t)/dt)]/e 0t). BothH andK j are functions of ventricular volume and are specific to the geometric model used, whereas the mode of afterload affectsK j only. The mathematically derivedF−V ce curves and their shifts owing to variations of α, β,H andK j under isotonic, isobaric and isovolumetric contractions simulated the experimentally establishedF−V ce curves from papillary muscle and their characteristic shifts reported by other investigators. On these bases we conclude thate(t) explicitly expresses the dynamic characteristics of myocardial contractions, which further supports our experimental contention thate(t) can be used as a useful index of contractile state of the ventricular chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

e(t) :

instantaneous left intraventricular pressure-volume ratio

e o(t):

e(t) in an arbitrarily defined control contractile state and heart rate

e max :

peak magnitude ofe(t)

t max :

time toe max from the onset of systole

α:

magnitude parameter ofe(t)

β:

time-duration parameter ofe(t)

p(t) :

left intraventricular pressure

v i(t):

left intraventricular absolute volume

V m :

left ventricular wall volume (incompressible)

V d :

volume correction factor

v io :

intraventricular unstressed volume when the left ventricle is not excited

v ic :

initial volume of the left ventricle given as preload

f 1(vi):

function only ofv i(t) in a given ventricle, and parameter relatinge(t) to myocardial force

f 2(vi):

function only ofv i(t) in a given ventricle, and length of a unit myocardial mass

k :

elastic modulus of series elastic component in the unit myocardial mass

F(t) :

myocardial force generated by the unit myocardial mass

V ce(t):

shortening velocity of contractile element in the unit myocardial mass

H(v ic):

function ofv ic, and parameter relatinge(t) to myocardial force

k j(vic):

function ofv ic, and parameter relating [de(t)|dt]|e(t) to shortening velocity of contractile element

References

  • Armour, J. A., andRandall, W. C. Structural basis for cardiac function.American Journal of Physiology 1970,218, 1517–1523.

    PubMed  CAS  Google Scholar 

  • Beneken, J. E. W., andDeWit, B. A physical approach to hemodynamic aspects of the human cardiovascular system. E. B. Reeve and A. C. Guyton, (Eds.)Physical bases of circulatory transport: Regulation and exchange. Philadelphia, PA: W. B. Saunders, 1967, pp. 1–45.

    Google Scholar 

  • Braunwald, E., Ross, J. Jr., andSonnenblick, E. H. Mechanisms of contraction of the normal and failing heart. Boston MA: Little Brown and Co., 1967.

    Google Scholar 

  • Brutsaert, D. L., andSonnenblick, E. H. Force-velocity-length-time relations of the contractile elements in heart muscle of the cat.Circulation Research 1969,24, 137–149.

    PubMed  CAS  Google Scholar 

  • Donders, J. J. H., andBeneken, J. E. W. Computer model of cardiac muscle mechanics.Cardiovascular Research 1971, Suppl. No. 1, 34–50.

    PubMed  Google Scholar 

  • Downing, S. E., andSonnenblick, E. H. Cardiac muscle mechanics and ventricular performance: Force and time parameters.American Journal of Physiology 1964,207, 705–715.

    PubMed  CAS  Google Scholar 

  • Frank, O. Zur Dinamir des Herzmuskels.Zeitschrift fuer Biologie 1895,32, 370–447.

    Google Scholar 

  • Fry, D. L., Griggs, D. M. Jr., andGreenfield, J. C., Jr. Myocardial mechanics; tensionvelocity-length relationships of heart muscle.Circulation Research 1964,14, 73–85.

    PubMed  CAS  Google Scholar 

  • Kavaler, F., Harris, R. S., Lee, R. J., andFisher, V. J. Frequency-force, behavior of in situ ventricular myocardium in the dog.Circulation Research 1971,28, 533–544.

    CAS  Google Scholar 

  • Levine, H. J., andBritman, N. A. Force-velocity relations in the intact dog heart.Journal of Clinical Investigation 1964,43, 1383–1396.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, R. H. Jr., Taylor, R. R., andCingolani, H. E. Measurement of myocardial developed tension and its relations to oxygen consumption.American Journal of Physiology 1966,211, 667–673.

    PubMed  Google Scholar 

  • Mirsky, I. Left ventricular stresses in the intact human heart.Biophysical Journal 1969,9, 189–208.

    Article  PubMed  CAS  Google Scholar 

  • Monroe, G., andFrench, G. M. Left ventricular pressure-volume relationships and myocardial oxygen consumption in isolated heart.Circulation Research 1961,9, 362–374.

    PubMed  CAS  Google Scholar 

  • Parmley, W. W., andSonnenblick, E. H. Series elasticity in heart muscle; its relation to contractile element velocity and proposed muscle models.Circulation Research 1966,20, 112–123.

    Google Scholar 

  • Parmley, W. W., Yeatman, L. A., andSonnenblick, E. H. Differences between isotonic and isometric force-velocity relations in cardiac and skeletal muscle.American Journal of Physiology 1970,219, 546–550.

    PubMed  CAS  Google Scholar 

  • Parmley, W. W., Chuck, L., andSonnenblick, E. H. Relation ofV max to different models of cardiac muscle.Circulation Research 1972,30, 34–43.

    PubMed  CAS  Google Scholar 

  • Patterson, S. W., Piper, H., andStarling, E. H. The regulation of heart beat.Journal of Physiology 1914,48, 465–513.

    PubMed  CAS  Google Scholar 

  • Ross, J., Jr., Covell, J. W., Sonnenblick, E. H., andBraunwald, E. Contractile state of the heart characterized by force-velocity relations in variably afterloaded and isovolumic beats.Circulation Research 1966,18, 149–163.

    Google Scholar 

  • Sagawa, K. Analysis of the ventricular pumping capacity as a function of input and output pressure loads. In E. B. Reeve and A. C. Guyton, (Eds.),Physical bases of circulatory transport: Regulation and exchange. Philadelphia, PA: W. B. Saunders, 1967, pp. 141–149.

    Google Scholar 

  • Sandler, H., andDodge, H. T., Left ventricular tension and stress in man.Circulation Research 1963,13, 91–104.

    PubMed  CAS  Google Scholar 

  • Sarnoff, S. J., and Mitchell, J. H. The control of the function of the heart. In:Handbook of Physiology: II. Circulation, Vol. 1, American Physiological Society, 1962, pp. 489–532.

  • Sonnenblick, E. H. Force-velocity relations in mammalian heart muscle.American Journal of Physiol. 1962,202, 931–939.

    CAS  Google Scholar 

  • Sonnenblick, E. H. Determinants of active state in heart muscle; force, velocity, instantaneous muscle length, time.Federation Proceedings 1965,24, 1396–1409.

    PubMed  CAS  Google Scholar 

  • Suga, H. Analysis of left ventricular pumping by its pressure-volume coefficient.Japanese Journal of Medical Electronics and Biological Engineering 1969a,7, 406–415 (in Japanese).

    Google Scholar 

  • Suga, H. Time course of left ventricular pressure-volume relationship under various enddiastolic volume.Japanese Heart Journal 1969b,10, 509–515.

    PubMed  CAS  Google Scholar 

  • Suga, H. Time course of left ventricular pressure-volume relationship under various extents of aortic occlusin.Japanese Heart Journal 197011, 373–378.

    PubMed  CAS  Google Scholar 

  • Suga, H. Left ventricular time-varying pressure-volume ratio in systole as an index of myocardial inotropism.Japanese Heart Journal 1971a,12, 153–160.

    PubMed  CAS  Google Scholar 

  • Suga, H. Theoretical analysis of a left ventricular pumping model based on the systolic time-varying pressure-volume ratio.IEEE Transactions in Biomedical Engineering 1971b,18, 47–55.

    CAS  Google Scholar 

  • Suga, H., Kamiya, A., andTogawa, T. Left ventricular volume measurement by cardiometry with complete right heart bypass (abstract).Journal of Physiological Society of Japan 1971,33, 451.

    Google Scholar 

  • Wiggers, C. J. Circulatory dynamics. New York: Grune and Stratton, 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abstract of this paper was presented in the fall meeting of the American Physiological Society (1971) [Suga, H. and Sagawa, K.The Physiologist, 1971,14, 239].

Preliminary analysis was made by Hiroyuki Suga in Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Tokyo, Further analysis was supported in part of PHS Grant HE 14529.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suga, H., Sagawa, K. Mathematical interrelationship between instantaneous ventricular pressure-volume ratio and myocardial force-velocity relation. Ann Biomed Eng 1, 160–181 (1972). https://doi.org/10.1007/BF02584205

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584205

Keywords

Navigation