Skip to main content
Log in

Respiratory airflow patterns that satisfy power and force criteria of optimality

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Previous investigations have shown that natural breathing in man takes place at respiratory frequencies closely approximating values satisfying either criteria of minimal power consumption or minimal average muscle force development. In the present work, these two critera are applied to predict optimal airflow patterns for various models of the pulmonary system. The power criterion requires a rectangular intrabreath pattern, whereas for the force criterion either no optimum exists, or a triangular airflow shape is predicted, depending on the particular choice of the pulmonary model. A comparision of these results with experimentally observed pneumotachograms allows one to exclude the force criterion as an optimization principle. The power criterion appears to provide a reasonable prediction of the inspiratory flow pattern in nonresting man, particularly under conditions of higher ventilatory demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athans, M., andFalb, P. L. Optimal Control, New York: McGraw-Hill Book Company, 1966. Pp. 445–454, 671–674.

    Google Scholar 

  • Briscoe, W. A., andDu Bois, A. B. The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size.Journal of Clinical Investigation 1958,37, 1279–1285.

    PubMed  CAS  Google Scholar 

  • Christie, R. V. Dyspnea in relation to the visco-elastic properties of the lung.Proceedings of the Royal Society of Medicine 1953,46, 381–386.

    PubMed  CAS  Google Scholar 

  • Elsgolc, L. E. Calculus of Variations. Reading, MA.: Addison-Wesley Publishing Company, Inc., 1962.

    Google Scholar 

  • Ganong, W. F.,Review of Medical Physiology (4th ed.). California: Lange, 1969. Pp. 517–528.

    Google Scholar 

  • Grodins, F. S. Some simple principles and complex realities of cardiopulmonary control in exercise.Circulation Research 1967,20 and21, Suppl. 1, 171–178.

    Google Scholar 

  • Hey, E. N., Lloyd, B. B., Cunningham, D. J. C., Jukes, M. G. M., andBolton, D. P. G. Effects of various respiratory stimuli on depth and frequency of breathing in man.Respiration Physiology 1966,1, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Mead, J. Control of respiratory frequency.Journal of Applied Physiology 196015, 325–336.

    Google Scholar 

  • Mead, J., andAgostoni, E. Dynamics of breathing. In.Handbook of Physiology Respiration. Washington, D. C.: Am. Physiol. Soc., 1964. Section 3, Vol. 1, Chapter 14, pp.411–427.

    Google Scholar 

  • Milic-Emili, J., andTyler, J. M. Relation between work output of respiratory muscles and end-tidal CO2 tension.Journal of Applied Physiology, 1963,18, 497–504.

    Google Scholar 

  • Morrow, P. E., andVosteen, R. E. Pneumatographic studies in man and dog incorporating a portable wireless transducer.Journal of Applied Physiology 1953,5, 348–360.

    PubMed  CAS  Google Scholar 

  • Nadel, J. A., andComroe, J. H. Acute effects of inhalation of cigarette smoke on airway conductance.Journal of Applied Physiology 1961,16, 713–716.

    PubMed  CAS  Google Scholar 

  • Otis, A. B. The work of breathing. InHandbook of Physiology Respiration. Washington, D. C.: Am. Physiol. Soc., 1964. Section 3, Vol. 1, Chapter 17, pp. 463–476.

    Google Scholar 

  • Otis, A. B., Fenn, W. O., andRahn, H. Mechanics of breathing in man.Journal of Applied Physiology 1950,2, 592–607.

    PubMed  CAS  Google Scholar 

  • Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., andMischchenki, E. F. The Mathematical Theory of Optimal Processes. New York: John Wiley and Sons, 1962.

    Google Scholar 

  • Proctor, D. F., andHardy, J. B. Studies of respiratory airflow.Bulletin of Johns Hopkins Hospital 1949,85, 253–280.

    Google Scholar 

  • Rohrer, F. Physiologie der Atembewegung. In A. Betheet al. (Eds.),Handbuch der normalen und pathologischen Physiologie. Berlin: Springer, 1925. Vol. 2, pp. 70–127.

    Google Scholar 

  • Silverman, L., Lee, G., Plotkin, T., Sawyers, L. A., andYancey, A. R.. Airflow measurements on human subjects with and without respiratory resistance at several work rates.Archives of Industrial Hygiene and Occupational Medicine 1951,3, 461–478.

    CAS  Google Scholar 

  • Yamashiro, S. M., andGrodins, F. S. Optimal regulation of respiratory airflow.Journal of Applied Physiology 1971,30, 597–602.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported by a Grant HE-09284 from the National Heart and Lung Institute, and NIH grant 5T01-GM-00606.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruttimann, U.E., Yamamoto, W.S. Respiratory airflow patterns that satisfy power and force criteria of optimality. Ann Biomed Eng 1, 146–159 (1972). https://doi.org/10.1007/BF02584204

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584204

Keywords

Navigation