Skip to main content
Log in

The effect of acute metabolic alkalosis on bicarbonate transport along the loop of Henle. The role of active transport processes and passive paracellular backflux

  • Original Article
  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The loop of Henle (LOH) reabsorbs approximately 15% of filtered HCO 3 via a luminal Na+-H+ exchanger and H+ATPase. During acute metabolic alkalosis (AMA) induced by i.v. HCO 3 infusion, we have observed previously inhibition of LOH net HCO 3 reabsorption\((J_{HCO_3^ - } )\), which contributes to urinary elimination of the HCO 3 load and correction of the systemic alkalosis. To determine whether the activities of the Na+-H+ exchanger and/or H+-ATPase are reduced during AMA, two inhibitors believed to be sufficiently specific for each transporter were delivered by in vivo LOH microperfusion during AMA. AMA reduced LOH\(J_{HCO_3^ - } \) from 205.0±0.8 to 96.2±11.8 pmol · min−1 (P<0.001). Luminal perfusion with bafilomycin A1 (10−4 mol · l−1) caused a further reduction in\(J_{HCO_3^ - } \) by 83% and ethylisopropylamiloride (EIPA; 5.10−4 mol · l−1) completely abolished net HCO 3 reabsorption. The combination of bafilomycin A1 and EIPA in the luminal perfusate was additive, resulting in net HCO 3 secretion (−66.6±20.8 pmol · min−1;P<0.001) and abolished net fluid reabsorption (from 5.0±0.6 during AMA to 0.2±1.1 nl · min−1;P<0.001). To establish whether HCO 3 secretion via luminal stilbenesensitive transport mechanism participates in LOH adaptation to AMA, we added diisothiocyanato-2,2′-stilbenedisulphonate (DIDS; 10−4 mol · l−1) to the perfusate. No effect was found. However, when the same LOH were exposed to luminal DIDS for more than 10 min, the direction of net HCO 3 movement was reversed and net HCO 3 secretion occurred:\(J_{HCO_3^ - } \) changed from 90.6±8.8 to −91.9±34.1 pmol · min−1;P<0.01, an effect that was not observed in the control state (undisturbed acid-base balance). Thus, during AMA, neither the luminal Na+-H+ exchanger nor the H+-ATPase are noticeably suppressed. However, pharmacological elimination of both transporters, as well as prolonged exposure of the tubular lumen to DIDS, induced net HCO 3 secretion. This secretory flux may reflect paracellular backflux due to the steeper blood to lumen HCO 3 concentration gradient that presumably prevails in AMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpern RJ, Rector FC (1985) A model of proximal tubular bicarbonate absorption. Am J Physiol 248:F272-F281

    PubMed  CAS  Google Scholar 

  2. Alpern RJ, Cogan MG, Rector FR (1982) Effect of luminal bicarbonate concentration on proximal acidification in the rat. Am J Physiol 243:F53-F59

    PubMed  CAS  Google Scholar 

  3. Baum M (1987) Evidence that parallel Na+/H+ and Cl/HCO3(OH) antiporters transport NaCl in the rabbit proximal convoluted tubule. Am J Physiol 21:F338-F345

    Google Scholar 

  4. Bichara M, Paillard M, Corman B, DeRouffignac GC, Leviel F (1984) Volume expansion modulates NaHCO3 and NaCl transport in the proximal tubule and Henle's loop. Am J Physiol 247:F140-F150

    PubMed  CAS  Google Scholar 

  5. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  PubMed  CAS  Google Scholar 

  6. Buerkert J, Martin D, Trigg D (1983) Segmental analysis of the renal tubule in buffer production and net acid formation. Am J Physiol 244:F442-F454

    PubMed  CAS  Google Scholar 

  7. Byers MK, Levine DZ, McLeod RA, Luisello JA (1979) Loop of Henle bicarbonate accumulation in vivo in the rat. J Clin Invest 63:59–66

    PubMed  Google Scholar 

  8. Capasso G, Unwin R, Ciani F, De Santo NG, De Tommaso G, Russo F, Giebisch G (1994) Bicarbonate transport along the loop of Henle. II Effects of acid-base, dietary and neurohumoral determinants. J Clin Invest 94:830–838

    PubMed  CAS  Google Scholar 

  9. Capasso G, Unwin R, Giebisch G (1991) Role of the loop of Henle in urinary acidification. Kidney Int 40:S33-S35

    Google Scholar 

  10. Capasso G, Unwin R, Agulian S, Giebisch G (1991) Bicarbonate transport along the loop of Henle: 1. Microperfusion studies of load and inhibitor sensitivity. J Clin Invest 88:430–437

    PubMed  CAS  Google Scholar 

  11. Chan YL, Malnic G, Giebisch G (1989) Renal bicarbonate reabsorption in the rat. III. Distal tubule perfusion study of load dependence and bicarbonate permeability. J Clin Invest 84:931–938

    PubMed  CAS  Google Scholar 

  12. Di Stefano A, Greger R, Rouffignac C de, Wittner M (1992) Active NaCl transport in the cortical thick ascending limb of Henle's loop of the mouse does not require the presence of bicarbonate. Pflügers Arch 420:290–296

    Article  PubMed  Google Scholar 

  13. DuBose TD, Pucacco LR, Carter NW (1981) Determination of disequilibrium pH in the rat kidney in vivo. Evidence for hydrogen secretion. Am J Physiol 240:F138-F146

    PubMed  CAS  Google Scholar 

  14. DuBose TD, Lucci MS, Hogg RJ, Pucacco LR, Kokko JP, Carter NW (1983) Comparison of acidification parameters in superficial and deep nephrons of the rat. Am J Physiol 244:F497-F503

    PubMed  Google Scholar 

  15. Friedman PA, Andreoli TE (1982) CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na+/H+ and Cl/HCO 3 exchange in apical plasma membrane. J Gen Physiol 80:683–711

    Article  PubMed  CAS  Google Scholar 

  16. Frömter E, Müller CW, Wick T (1971) Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods. In: Giebisch G (ed) Electrophysiology of Epithelia. Schattauer, Stuttgart, pp. 119–146

    Google Scholar 

  17. Furuya H, Breyer MD, Jacobson HR (1991) Functional characterization of alpha- and beta-intercalated cell types in rabbit cortical collecting duct. Am J Physiol 261:F377-F385

    PubMed  CAS  Google Scholar 

  18. Garg LC, Narang N (1990) Decrease inN-ethylmaleimidesensitive ATPase activity in collecting duct by metabolic alkalosis. Can J Physiol Pharmacol 68:1119–1123

    PubMed  CAS  Google Scholar 

  19. Geibel J, Giebisch G, Boron WF (1989) Basolateral sodium-coupled acid-base transport mechanisms of the rabbit proximal tubule. Am J Physiol 257:F790-F797

    PubMed  CAS  Google Scholar 

  20. Good D (1990) Adaptation of bicarbonate and ammonium transport in the rat medullary thick ascending limb: effects of chronic metabolic acidosis and sodium intake. Am J Physiol 258:F1345-F1353

    PubMed  CAS  Google Scholar 

  21. Khadouri C, Marsy S, Barlet-Bas C, Cheval L, Doucet A (1992) Effect of metabolic acidosis and alkalosis on NEM-sensitive ATPase in rat nephron segments. Am J Physiol 262:F583-F590

    PubMed  CAS  Google Scholar 

  22. Kohn OF, Mitchell PP, Steinmetz PR (1990) Characteristics of apical Cl HCO3 exchanger of bicarbonate-secreting cells in turtle bladder. Am J Physiol 258:F9-F14

    PubMed  CAS  Google Scholar 

  23. Kondo Y, Frömter E (1990) Evidence of chloride bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflügers Arch 415:726–733

    Article  PubMed  CAS  Google Scholar 

  24. Lang F, Quehenberger P, Greger R, Silbernagl S, Stockinger P (1980) Evidence for a bicarbonate leak in the proximal tubule of the rat kidney. Pflügers Arch 386:239–244

    Article  PubMed  CAS  Google Scholar 

  25. Lucci MS, Warnock DG (1979) Effects of anion-transport inhibitors on NaCl reabsorption in the rat superficial proximal convoluted tubule. J Clin Invest 64:570–579

    PubMed  CAS  Google Scholar 

  26. Sabatini S, Laski ME, Kurtzman NA (1990) NEM-sensitive ATPase activity in rat nephron — effect of metabolic acidosis and alkalosis. Am J Physiol 258:F297-F304

    PubMed  CAS  Google Scholar 

  27. Schuster VL (1986) Cyclic adenosine monophosphate-stimulated anion transport in rabbit cortical collecting duct: kinetics, stoichiometry, and conductive pathways. J Clin Invest 78:1621–1630

    Article  PubMed  CAS  Google Scholar 

  28. Uhlich E, Baldamus CA, Ullrich KJ (1968) Verhalten von CO2-Druck und Bicarbonat im Gegenstromsystem des Nierenmarks. Pflügers Arch 303:31–48

    Article  PubMed  CAS  Google Scholar 

  29. Wahl M, Schnermann J (1969) Microdissection of the length of different tubular segments of rat superficial nephron. Z Anat Entwicklunsgesch 129:128–134

    Article  CAS  Google Scholar 

  30. Wesson DE (1990) Dietary bicarbonate reduces rat distal nephron acidification evaluated in situ. Am J Physiol 258:F870-F876

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capasso, G., Unwin, R., Ciani, F. et al. The effect of acute metabolic alkalosis on bicarbonate transport along the loop of Henle. The role of active transport processes and passive paracellular backflux. Pflugers Arch. 429, 44–49 (1994). https://doi.org/10.1007/BF02584028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584028

Key words

Navigation