Skip to main content

Flatulence caused by soya and its control through processing

Abstract

Elimination of flatulence is a challenging practical problem associated with the comsumption of soybeans as well as other food legumes and other selected foodstuffs. The problem is compounded by the variability in susceptibility among individuals. Research has established that the oligosaccharides—verbascose, stachyose, and raffinose—are the major cause of soybean flatulence. They escape digestion and are fermented by intestinal microflora to form excessive amounts of carbon dioxide and hydrogen. Hot water treatment, aqueous alcohol extraction, and isoelectric protein precipitation processes have been adapted to produce flatus-free products commercially. At the household level, soaking combined with germination appears to be a practical means of producing soybean sprouts having low flatus activity. Food legumes, which include some oil-seeds, peas, and beans, as well as selected vegetables, contain enough of the oligosaccharides—verbascose, stachyose, raffinose—to be a major cause of flatulence in humans and animals. In the absence of alpha-galactosidases in the mammalian intestinal mucosa, these oligosaccharides escape digestion and are not absorbed. As a consequence, the active microflora in the ileum, colon, and fecal matter of the large intestine ferment them to form excessive levels of rectal gas, primarily carbon dioxide and hydrogen. In some instances, undigested starch and other carbohydrates contribute to the flatulent effect of diets. With 70% of the world’s population being lactase-deficient (hypolactasia), susceptibility to flatulence would be more widespread with diets containing both food legumes and milk products.

Use of food additives, antibiotics, and phenolic compounds to inhibit flatulence is not a practical approach. However, soya processing technology used to manufacture protein concentrates and isolates can be adapted to produce flatus-free products from other food legumes. Hot water treatment, aqueous alcohol extraction, or isoelectric protein precipitation insolubilizes most of the protein and removes the oligosaccharides. Tempeh and tofu are two other soya products that exhibit little or no flatus activity. Soaking, fermentation, enzymatic hydrolysis, and germination can also be used to eliminate oligosaccharides. Tests with humans and rats indicate that a combination of such processes can be used to reduce flatus activity. The beneficial effects of germination on flatulence, often conflicting and contradictory, have been attributed to failure to control conditions that ensure removal of most of the oligossaccharides. Whether the high-molecular-weight soybean polysaccharides (dietary fiber), which normally do not cause flatulence, can be modified during germination to become substrates for flatus production by the intestinal microflora is not known. Such an effect could compensate for the loss of stachyose and raffinose.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Protein Advisory Group of the United Nations, PAG Statement No. 22, PAG Bulletin, Vol. III, No. 2, 1 (1973).

  2. 2.

    Cristofaro, E., F. Mottu and J.J. Wuhrmann, in “Sugars in Nutrition,” edited by H.L. Sipple and K.W. McNutt, Academic Press, New York, 1974.

    Google Scholar 

  3. 3.

    Rackis, J.J., in “Physiological Effects of Food Carbohydrates,” edited by A. Jeanes and J. Hodge, American Chemical Society Symposium Series No. 15, American Chemical Society, Washington, DC, 1975.

    Google Scholar 

  4. 4.

    Rackis, J.J., in “World Soybean Research,” edited by L.D. Hill, The Interstate Printers and Publishers, Inc., Danville, IL, 1976.

    Google Scholar 

  5. 5.

    Gitzelmann, R., and S. Auricchio, Pediatrics 36:231 (1965).

    CAS  Google Scholar 

  6. 6.

    Ruttloff, H., A. Taeufel, W. Krause, H. Haenel and K. Taeufel, Nahrung 11:39 (1967).

    Article  CAS  Google Scholar 

  7. 7.

    Taeufel, K., W.G. Krause, H. Ruttloff and R. Maune, Z. Gesamte Exp. Med. Einschl. Exp. Chir. 144:54 (1967).

    Article  CAS  Google Scholar 

  8. 8.

    Krause, W.G., K. Taeufel, H. Ruttloff and R. Maune, Ernaehrungsforschung 13:161 (1968).

    CAS  Google Scholar 

  9. 9.

    Crane, R.K., in “Comprehensive Biochemistry, Carbohydrate Metabolism,” edited by M. Florkin and E. Stotz, Elsevier, Amsterdam, Netherlands, Vol. 17, 1969.

    Google Scholar 

  10. 10.

    Hansen, R.G., and R. Gitzelmann, in “Physiological Effects of Food Carbohydrates,” edited by A. Jeanes and J. Hodge, American Chemical Society Symposium Series No. 15, American Chemical Society, Washington, DC, 1975.

    Google Scholar 

  11. 11.

    Paige, D.M., T.M. Bayles, S.S. Huange and R. Wexler, Ibid.in “.

    Google Scholar 

  12. 12.

    Steggerda, F.R., E.A. Richards and J.J. Rackis, Proc. Soc. Exp. Biol. Med. 121:1235 (1966).

    CAS  Google Scholar 

  13. 13.

    Honig, D.H., and J.J. Rackis, J. Agric. Food Chem. 27:1262 (1980).

    Article  Google Scholar 

  14. 14.

    Rackis, J.J., D.J. Sessa, F.R. Steggerda, T. Shimizu, J. Anderson and S.J. Pearl, J. Food Sci. 35:634 (1970).

    Article  CAS  Google Scholar 

  15. 15.

    Wagner, J.R., J.F. Carson, R. Becker, M.R. Gumbmann and I.E. Danhof, J. Nutr. 107:680 (1977).

    CAS  Google Scholar 

  16. 16.

    Rackis, J.J., JAOCS 51:151A (1974).

  17. 17.

    Meyer, S., and D.H. Calloway, Cereal Chem. 54:110 (1977).

    CAS  Google Scholar 

  18. 18.

    Van Stratum, P.G., and M. Rudrum, JAOCS 56:130 (1979).

    Google Scholar 

  19. 19.

    Calloway, D.H., C.A. Hickey and E.L. Murphy, J. Food Sci. 36:251 (1971).

    Article  CAS  Google Scholar 

  20. 20.

    Bressani, R., and L.G. Elias, in “New Protein Foods, Vol. 1A, Technology,” edited by A.M. Altschul, Academic Press, New York, Chap. V, 1974, p. 230.

    Google Scholar 

  21. 21.

    Steggerda, F.R., Ann. NY Acad. Sci. 150:57 (1968).

    Article  CAS  Google Scholar 

  22. 22.

    Calloway, D.H., Ibid. 150:82 (1968).

    Article  CAS  Google Scholar 

  23. 23.

    Beck, J.E., Ibid. 150:1 (1968).

    Google Scholar 

  24. 24.

    Calloway, D.H., and D.E. Burroughs, Gut. 10:180 (1969).

    CAS  Google Scholar 

  25. 25.

    Soybeans: Chemistry and Technology, edited by A.K. Smith and S.J. Circle, Vol. 1, Proteins, AVI Publishing Co., Westport, CT, 1972.

    Google Scholar 

  26. 26.

    Sherba, S.E., U.S. Patent 3,632,436 (1972).

  27. 27.

    Sugimoto, H., and J.P. Van Buren, J. Food Sci. 35:655 (1970).

    Article  CAS  Google Scholar 

  28. 28.

    Ciba-Geigy, A.G., French Patent 2,137,548 (1973).

  29. 29.

    Yamane, T., Sucr. Belge 90:345 (1971).

    CAS  Google Scholar 

  30. 30.

    Delente, J., J.H. Johnson, M.J. Kuo, R.J. O’Connor and L.E. Weeks, Biotechnol. Bioeng. 16:1227 (1974).

    Article  CAS  Google Scholar 

  31. 31.

    Reynolds, J.H., Ibid. 16:135 (1974).

    Article  CAS  Google Scholar 

  32. 32.

    Smiley, K.L., D.E. Hensley and H.J. Gasdorf, Appl. Environ. Microbiol. 31:615 (1976).

    CAS  Google Scholar 

  33. 33.

    McGhee, J.E., R. Silman and E.B. Bagley, JAOCS 55:244 (1978).

    CAS  Google Scholar 

  34. 34.

    Silman, R.W., Biotechnol. Bioeng. 22:411 (1980).

    Article  CAS  Google Scholar 

  35. 35.

    Silman, R.W., L.T. Black, J.E. McGhee and E.B. Bagley, Ibid. 22:533 (1980).

    Article  CAS  Google Scholar 

  36. 36.

    Mital, B.K., and K.H. Steinkraus, J. Food Sci. 40:114 (1975).

    Article  CAS  Google Scholar 

  37. 37.

    Hesseltine, C.W., Mycologia 107:149 (1965).

    Article  Google Scholar 

  38. 38.

    Ramakrishnan, C.V., Study of Indian Fermented Foods from Legumes and Production of Similar Fermented Foods from U.S. Soybeans, Terminal report of PL-480 project FG-IN-491, USDA, Washington, DC (1979).

    Google Scholar 

  39. 39.

    Wang, H.L., L. Kraidej and C.W. Hesseltine, J. Milk Food Technol. 37:71 (1974).

    CAS  Google Scholar 

  40. 40.

    Kanda, H., H.L. Wang, C.W. Hesseltine and K. Warner, Process Biochem. 11:23 (1976).

    CAS  Google Scholar 

  41. 41.

    Sutalf, L.O., and M.D. Levitt, Dig. Dis. Sci. 24:652 (1979).

    Article  Google Scholar 

  42. 42.

    Rackis, J.J., in “Post-Harvest Biology and Biotechnology,” edited by H.O. Hultin, Food and Nutrition Press, Westport, CT, 1979, p. 485.

    Google Scholar 

  43. 43.

    Pomeranz, Y., M.D. Shogren and K.F. Finney, J. Food Sci. 42:824 (1977).

    Article  CAS  Google Scholar 

  44. 44.

    Finney, P.L., in “Nutritional Improvement of Food Proteins,” edited by M. Freidman, Advances in Experimental Medicine and Biology, Vol. 105, Plenum Press, New York, 1979, p. 681.

    Google Scholar 

  45. 45.

    Finney, P.L., M.M. Morad and J.D. Hubbard, Cereal Chem., in press.

  46. 46.

    Becker, R., A.C. Olson, D.P. Frederick, S. Kon, M.R. Gumbmann and J.R. Wagner, J. Food Sci. 39:366 (1974).

    Article  Google Scholar 

  47. 47.

    Karimzadigan, E., A.J. Clifford and F.W. Hill, J. Nutr. 109:2247 (1979).

    Google Scholar 

  48. 48.

    Fleming, S.E., and J.R. Vose, Ibid. 109:2067 (1979).

    CAS  Google Scholar 

  49. 49.

    Kim, W.J., C.J.B. Smit and T.O.M. Nakayama, Lebensm. Wiss. Technol. 6:201 (1973).

    CAS  Google Scholar 

  50. 50.

    Ku, S., L.S. Wei, M.P. Steinberg, A.I. Nelson and T. Hymowitz, J. Food Sci. 41:361 (1976).

    Article  CAS  Google Scholar 

  51. 51.

    East, J.W., T.O.M. Nakayama and S.B. Packman, Crop Sci. 12:7 (1972).

    CAS  Article  Google Scholar 

  52. 52.

    Adjei-Twum, D.C., W.B. Splittstoessor and J.S. Vandemack, HortScience 11:235 (1976).

    Google Scholar 

  53. 53.

    Hsu, S.H., H.H. Hadley and T. Hymowitz, Crop. Sci. 13:407 (1973).

    CAS  Article  Google Scholar 

  54. 54.

    Reddy, N.R., D.K. Salunkhe and R.P. Sharma, Cereal Chem., in press.

  55. 55.

    Venkataraman, L.V., and T.V. Jaya, Nutr. Rep. Int. 12:387 (1975).

    CAS  Google Scholar 

  56. 56.

    Nutritional Aspects of Common Beans and Other Legumes Seeds as Animal and Human Foods, edited by W.G. Jaffee, Archivos Latinoamericanos de Nutricion Apartados 2049, Caracas, Venezuela, 1973.

  57. 57.

    Hymowitz, T., W.M. Walker, F.I. Collins and P. Panczer, Commun. Soil Sci. Plant Anal. 3:367 (1972).

    CAS  Article  Google Scholar 

  58. 58.

    Levitt, M.D., R.B. Lasser, J.S. Schwartz and J.H. Bond, N. Engl. J. Med. 295:260 (1976).

    CAS  Article  Google Scholar 

  59. 59.

    Hellendoorn, E.W., Qual. Plant. Plant Foods Hum. Nutr. 29:227 (1979).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

About this article

Cite this article

Rackis, J.J. Flatulence caused by soya and its control through processing. J Am Oil Chem Soc 58, 503–509 (1981). https://doi.org/10.1007/BF02582414

Download citation

Keywords

  • Oligosaccharide
  • Raffinose
  • Intestinal Microflora
  • Stachyose
  • Lactase Deficiency