Phytic acid in soybeans

  • G. Jaffe
Soya Protein—Nutrition—Roundtable Discussions


Phytic acid, the hexaphosphate of myo-inositol, is the most important phosphate reserve compound in many plant seeds, but many of its salts are poorly digested by animals. It can form complexes with seed proteins, some of which sequester metal ions, making them unavailable for the animal organism. Soya protein isolates may be higher in phytate content than the soya flour from which they are obtained. Zinc is the mineral of most concern because its bioavailability from some soya products is quite low and because of its marginal levels in some human diets. The availability of iron from soya flour and soya isolates is higher than that from some other plant foods with lower phytate contents. Processes for removing the larger part of the tightly bound phytates from soya protein isolates are described.


Soya Protein Soya Flour Trypsin Inhibitor Phytic Acid Soya Protein Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harborne, J.B., “Introduction to Ecological Biochemistry,” Academic Press, New York and London, 1977, p. 58.Google Scholar
  2. 2.
    Erdman, J.W., Jr., JAOCS 56:736 (1979).Google Scholar
  3. 3.
    O’Dell, B.L., in “Soy Protein and Human Nutrition,” Academic Press, New York and London, 1979, p. 187.Google Scholar
  4. 4.
    Rackis, J.J., and R.L. Anderson, Food Prod. Dev. 11:38 (1977).Google Scholar
  5. 5.
    Oberlease, D., in “Toxicants Occurring Naturally in Foods,” NAS, Washington, DC, 1973, p. 363.Google Scholar
  6. 6.
    Ellis, R., E.R. Morris and C. Philpot, Anal. Chem. 77:536 (1977).Google Scholar
  7. 7.
    Davies, N.T., and H. Reid, Brit. J. Nutr. 41:579 (1979).CrossRefGoogle Scholar
  8. 8.
    Makover, R.U., Cereal Chem. 47:288 (1970).Google Scholar
  9. 9.
    Ellis, R., and E.R. Morris, Nutr. Rep. Int. 20:739 (1979).Google Scholar
  10. 10.
    Rotruck, J.T., and K.R. Lursen, J. Agric. Food Chem. 27:27 (1979).CrossRefGoogle Scholar
  11. 11.
    Steinke, F.N., and D.T. Hopkins, J. Nutr. 108:481 (1978).Google Scholar
  12. 12.
    Mellanby, E., J. Physiol. 109:488 (1949).Google Scholar
  13. 13.
    Momcilovic, B., Belonje, A. Giraux and B.G. Shah, Nutr. Rep. Int. 12:197 (1975).Google Scholar
  14. 14.
    Taylor, T.G., and J.W. Coleman, Brit. J. Nutr. 42:113 (1979).CrossRefGoogle Scholar
  15. 15.
    Lo, G.S., F.H. Steinke and D.T. Hopkins, J. Nutr. 110:829 (1980).Google Scholar
  16. 16.
    Forbes, R.M., and H.M. Parker, Nutr. Rep. Int. 5:681 (1977).Google Scholar
  17. 17.
    Erdman, J.W., Jr., K.E. Weingartner, H.M. Parker and R.M. Forbes, Fed. Proc. 37:891 Abst. No. 3563 (1978).Google Scholar
  18. 18.
    Oberlease, D., M.E. Muhrer and B.L. O’Dell, J. Nutr. 90:56 (1966).Google Scholar
  19. 19.
    Davies, N.T., and S.E. Olpin, Brit. J. Nutr. 41:590 (1979).Google Scholar
  20. 20.
    Hambridge, K.M., P.A. Walvavens, R.M. Brown, J. Webster, S. White, M. Anthony and M.L. Roth, Am. J. Clin. Nutr. 29:734 (1976).Google Scholar
  21. 21.
    Hartman, G.H., JAOCS 56:734 (1979).Google Scholar
  22. 22.
    Ford, J.R., G.C. Mustakas and R.D. Schmutz, Ibid. 55:371 (1978).Google Scholar
  23. 23.
    De Rham and T. Jost, J. Food Sci. 44:596 (1979).CrossRefGoogle Scholar
  24. 24.
    Pileggi, V.J., Arch. Biochem. Biophys. 80:1 (1959).CrossRefGoogle Scholar
  25. 25.
    Magee, A.C., and F.P. Graininger, Nutr. Rep. Int. 20:771 (1979).Google Scholar

Copyright information

© American Oil Chemists’ Society 1981

Authors and Affiliations

  • G. Jaffe
    • 1
  1. 1.Instituto Nacional de Nutrición, Apartado 2049CaracasVenezuela

Personalised recommendations