Skip to main content
Log in

Carboxylmethylation of insulin and glucagonin vitro

  • Original Contributions
  • Published:
Acta diabetologia latina Aims and scope Submit manuscript

Summary

We studied the methyl acceptor capacity of insulin and glucagonin vitro. The levels of carboxylmethylation of pancreatic hormones (dpm × 103), when incubated with S-adenosyl-L-(3H-methyl)-methionine as methyl donor and purified protein carboxylmethylase, were: insulin (n=6) 8.1±0.2 and 11.1±1.5 (mean ± SEM) for 0.25 and 1.0 mg/ml, respectively; glucagon (n=6) 17.0±3.2 and 40.2±2.5 (mean ± SEM) for 0.5 and 1.0 mg/ml, respectively. On a molar basis, the methyl acceptor capacity was 1.0 dpm/pmol for insulin and 9.5 dpm/pmol for glucagon. Polyacrylamide gel electrophoresis of carboxylmethylated hormones showed a radioactivity (3H-methyl) peak that co-migrated with the corresponding125I-hormone. Glucagon, but not insulin, seems to be a relatively good substrate for carboxylmethylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchardt R. T., Olsen J., Eiden L., Schowen R. L., Rutledge C. O.: The isolation and characterization of the methyl-acceptor protein from adrenal chromaffin granules — Biochem. biophys. Res. Commun.83, 970–976, 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Campillo J. E., Ashcroft S. H. J.: Protein carboxyl methylation in rat islets of Langerhans — FEBS Letters138, 71–75, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Campillo J. E., Mena P., Alejo S., Barriga C.: Protein carboxyl methylation in rat pancreatic islets. Possible role in B-cell function. In:Atwater I., Rojas E., Soria B. (Eds.). Biophysics of the pancreatic B-cell. Plenum Press, New York, 1986; pp. 429–440.

    Google Scholar 

  4. Clarke S., O’Connor C. M.: Do eukaryotic carboxyl methyltransferases regulate protein function? — Trends biochem. Sci.8, 391–394, 1983.

    Article  CAS  Google Scholar 

  5. Davis R. H., Copenhaver J. H., Carver M. J.: Characterization of acidic proteins in cell nuclei from rat brain by high resolution acrylamide gel electrophoresis — J. Neurochem.19, 473–477, 1972.

    Article  PubMed  CAS  Google Scholar 

  6. Diliberto E. J. Jr, Axelrod J.: Characterization and substrate specificity of a protein carboxyl-methylase in the pituitary gland — Proc. nat. Acad. Sci. (Wash.)71, 1701–1704, 1974.

    Article  CAS  Google Scholar 

  7. Diliberto E. J. Jr, O’Dea R. F., Viveros O. H.: The role of protein carboxylmethylase in secretory and chemotactic eukaryotic cells. In:Usdin E., Borchardt R. T., Creveling C. R. (Eds): Transmethylation. Elsevier/North Holland, New York, 1979; pp. 529–538.

    Google Scholar 

  8. Diliberto E. J. Jr, Viveros O. H., Axelrod J.: Subcellular distribution of protein carboxylmethylase and its endogenous substrates in the adrenal medulla: possible role in the excitation-secretion coupling — Proc. nat. Acad. Sci. (Wash.)73, 4050–4054, 1976.

    Article  CAS  Google Scholar 

  9. Edgar D. H., Hope D. B.: Protein carboxylmethylase of the bovine posterior pituitary gland: neurophysins as a potential endogenous substrate — J. Neurochem.27, 949–955, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Eiden L. E., Borchardt R. T., Rutledge C. O.: Protein carboxylmethylation in neurosecretory processes. In:Usdin E., Borchardt R. T., Creveling C. R. (Eds): Transmethylation. Elsevier/North Holland, New York, 1979; pp. 539–546.

    Google Scholar 

  11. Gagnon C., Axelrod J.: Subcellular localization of protein carboxylmethylase and its substrates in rat pituitary lobes — J. Neurochem.32, 567–572, 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Gagnon C., Bardin C. W., Strittmatter W., Axelrod J.: Protein carboxylmethylation in the parotid gland and in the male reproductive system. In:Usdin E., Borchardt R. T., Creveling C. R. (Eds): Transmethylation. Elsevier/North Holland, New York, 1979; pp. 521–528.

    Google Scholar 

  13. Koshland D. E. Jr.: Biochemistry of sensing and adaptation in a simple bacterial system — Ann. Rev. Biochem.50, 765–782, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. McFadden P. N., Clarke S.: Methylation at d-aspartyl residues in erythrocytes: possible step in the repair of aged membrane proteins — Proc. nat. Acad. Sci. (Wash.)79, 2460–2464, 1982.

    Article  CAS  Google Scholar 

  15. Povilaitis V., Gagnon C., Heisler S.: Stimulus-secretion coupling in exocrine pancreas: role of protein carboxylmethylation — Amer. J. Physiol.240, G199-G205, 1981.

    PubMed  CAS  Google Scholar 

  16. Strittmatter W., Gagnon C., Axelrod J.: Beta-adrenergic stimulation of protein carboxylmethylation and amylase secretion in rat parotid gland — J. Pharmacol. exp. Ther207, 419–431, 1978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mena, P., Barriga, C., Timón, J. et al. Carboxylmethylation of insulin and glucagonin vitro . Acta diabet. lat 25, 127–131 (1988). https://doi.org/10.1007/BF02581376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02581376

Key-words

Navigation