Skip to main content
Log in

Isothermal compressibility and correlation radius near the critical point: Numerical analysis of the Ornstein-Zernike equation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Solution of the Ornstein-Zernike equation is analyzed numerically in the Percus-Yevick and hyperchain approximations for a system of Lennard-Jones particles in a critical region. The temperature dependences of correlation functions, isothermal compressibility η, and correlation radius of density fluctuations ζ are investigated at a critical density; the corresponding critical indices are determined. It is shown that the Percus-Yevick approximation yields satisfactory results when the correlation functions are calculated within a range corresponding to approximately 50 atomic (molecular) diameters. In this case, with ≈5% deviations from the critical temperature, the calculated and experimental values of η and critical indices are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Rushbrooke, in: H. N. V. Temperly, J. S. Rowlinson, and G. S. Rushbrooke (eds.),Physics of Simple Liquids, North-Holland, Amsterdam (1968), pp. 30–62.

    Google Scholar 

  2. J. S. Rowlinson, ——ibid., in: pp. 63–80.

    Google Scholar 

  3. C. A. Croxton,Liquid State Physics—A Statistical Mechanics Introduction, Cambridge, University Press (1974).

  4. C. A. Croxton (ed.),Progress in Liquid physics, Interscience, New York (1978).

    Google Scholar 

  5. J. J. Brey and A. Santos,J. Chem. Phys.,79, No. 9, 4652–4652 (1983).

    Article  CAS  Google Scholar 

  6. Shang-Keng Ma,Modern Theory of Critical Phenomena, Benjamin, Reading, MA (1976).

    Google Scholar 

  7. M. Chretiln (ed.),Statistical, Physical Phase Transitions and Superfluidity, Vols 1, 2, Gordon and Breach, New York (1968).

    Google Scholar 

  8. W. L. Jorgensen, J. D. Madura, and S. J. Swenson,J. Am. Chem. Soc.,106, No. 22, 6638–6646 (1984).

    Article  CAS  Google Scholar 

  9. S. K. Talitskikh and P. G. Khalatur, “Solution of the Ornstein-Zernike equations using a combined iteration procedure,” paper field at VINITI, No. 4829-B90, May 25 (1990).

  10. S. K. Talitskikh, P. G. Khalatur, and A. V. Krupko,Computational Methods in Chemistry, Tver State University, Tver (1990), pp. 90–109.

    Google Scholar 

  11. S. Labic, A. Malievskii, and P. Vonka,Mol. Phys.,56, No. 3, 709–715 (1985).

    Article  Google Scholar 

  12. M. J. Gillian, ——ibid.,78, No. 6, 1781–1794 (1979).

    Article  Google Scholar 

Download references

Authors

Additional information

Tver State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 5, pp. 799–807, September–October, 1995.

Translated by I. Izvekova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makeeva, I.V., Kokacheva, V.G., Talitskikh, S.K. et al. Isothermal compressibility and correlation radius near the critical point: Numerical analysis of the Ornstein-Zernike equation. J Struct Chem 36, 725–733 (1995). https://doi.org/10.1007/BF02579662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579662

Keywords

Navigation