Intersection theorems with geometric consequences

Abstract

In this paper we prove that if is a family ofk-subsets of ann-set, μ0, μ1, ..., μs are distinct residues modp (p is a prime) such thatk ≡ μ0 (modp) and forF ≠ F′ we have |FF′| ≡ μi (modp) for somei, 1 ≦is, then ||≦( n s ).

As a consequence we show that ifR n is covered bym sets withm<(1+o(1)) (1.2)n then there is one set within which all the distances are realised.

It is left open whether the same conclusion holds for compositep.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L. Babai andP. Frankl, On set intersections,J. Comb. Th. A28 (1980), 103–105.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    M. Deza, P. Erdős andP. Frankl, Intersection properties of systems of finite sets,Proc. London Math. Soc.36 (1978), 369–384.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    M. Deza, P. Erdős andN. M. Singhi, Combinatorial problems on subsets and their intersections,Advances in Mathematics, Suppl. Studies1 (1978), 259–265.

    Google Scholar 

  4. [4]

    M. Deza andI. G. Rosenberg, Cardinalités, de sommets et d’arêtes d’hypergraphes satisfaisant à certaines conditions d’intersection,Cahlers CERO.20 (1978), 279–285.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    P. Erdős, Problems and results in graph theory and combinatorial analysis,Proc. Fifth British Comb. Conf. 1975 Aberdeen, Congressus Numerantium,15 — Utilitas Mathematica, Winnipeg, 1976.

    Google Scholar 

  6. [6]

    P. Erdős, Some remarks on the theory of graphs,Bull. Amer. Math. Soc.53 (1947), 292–294.

    MathSciNet  Article  Google Scholar 

  7. [7]

    P. Erdős, Problems and results in chromatic graph theory, in:Proof techniques in graph theory (F. Harary ed.), Academic Press, London, 1969, 27–35.

    Google Scholar 

  8. [8]

    P. Frankl, Extremal problems and coverings of the space,European J. Combs,1 (1980), 101–106.

    MATH  MathSciNet  Google Scholar 

  9. [9]

    P. Frankl, A constructive lower bound for Ramsey numbers,Ars Comb.3 (1977), 297–302.

    MATH  MathSciNet  Google Scholar 

  10. [10]

    P. Frankl, Problem session,Proc. French—Canadian Joint Comb. Coll., Montreal 1978.

  11. [11]

    P. Frankl, Families of finite sets with prescribed cardinalities for pairwise intersections,Acta Math. Acad. Sci. Hung., to appear.

  12. [12]

    P. Frankl andI. G. Rosenberg, An intersection problem for finite sets, Europ. J. Comb2 (1981).

  13. [13]

    H. Hadwiger, Überdeckungssätze für den Euklidischen Raum,Portugaliae Math.4 (1944), 140–144.

    MATH  MathSciNet  Google Scholar 

  14. [14]

    H. Hadwiger, Überdeckung des Euklidischen Raumes durch kongruente Mengen,Portugaliae Math.4 (1945), 238–242.

    MATH  MathSciNet  Google Scholar 

  15. [15]

    D. G. Larman, A note on the realization of distances within sets in euclidean space,Comment. Math. Helvet.53 (1978), 529–535.

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    D. G. Larman andC. A. Rogers, The realization of distances within sets in euclidean space,Mathematika19 (1972), 1–24.

    MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    D. E. Raiskii, The realization of all distances in a decomposition ofRn inton + 1 parts (Russian)Mat. Zametki7 (1970), 319–323.

    MathSciNet  Google Scholar 

  18. [18]

    D. K. Ray-Chaudhuri andR. M. Wilson, Ont-designs,Osaka J. Math.12 (1975), 735–744.

    MathSciNet  Google Scholar 

  19. [19]

    H. J. Ryser, An extension of a theorem of de Bruijn and Erdõs on combinatorial designs,J. Algebra10 (1968), 246–261.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frankl, P., Wilson, R.M. Intersection theorems with geometric consequences. Combinatorica 1, 357–368 (1981). https://doi.org/10.1007/BF02579457

Download citation

AMS subject classification (1980)

  • 05 C 65
  • 05 C 35
  • 05 C 15