Normal subgroups of infinite multiply transitive permutation groups

Abstract

Some generalisations to infinite permutation groups of familiar results on normal subgroups of finite multiply transitive permutation groups are given, and the limits of these results are explored by means of examples.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    W. Burnside,Theory of Groups of Finite Order, Dover Publ. (reprint), New York, 1955.

    Google Scholar 

  2. [2]

    P. M. Cohn, The embedding of firs in skew fields,Proc. London Math. Soc. (3),23 (1971), 193–213.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    R. Fraïssé, Sur certains relations qui généralisent l’ordre des nombres rationnels,C. R. Acad. Sci. Paris 237 (1953), 540–542.

    MATH  MathSciNet  Google Scholar 

  4. [4]

    M. Hall Jr.,The Theory of Groups, Macmillan, New York, 1959.

    Google Scholar 

  5. [5]

    G. Higman, B. H. Neumann andH. Neumann, Embedding theorems for groups,J. London Math. Soc. (1),26 (1949), 247–254.

    Article  MathSciNet  Google Scholar 

  6. [6]

    N. Ito, Normal subgroups of quadruply transitive groups,Hokkaido Math. J. 1 (1972), 1–6.

    MATH  MathSciNet  Google Scholar 

  7. [7]

    C. Jordan,Traité des Substitutions et des Equations Algébriques, Gauthier-Villars, Paris, 1870.

    Google Scholar 

  8. [8]

    T. P. McDonough, A permutation representation of a free group,Quart. J. Math. Oxford (2),28 (1977), 353–356.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    P. M. Neumann, Generosity and characters of multiply transitive permutation groups,Proc. London Math. Soc. (3),31 (1975), 457–481.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    J. Tits, Généralisation des groupes projectifs basée sur leurs propriétés de transitivité,Acad. Roy. Belgique Cl. Sci. Mem. 27 (1952).

  11. [11]

    H. Wielandt,Finite Permutation Groups, Academic Press, New York, 1964.

    Google Scholar 

  12. [12]

    R. E. Woodrow, There are four countable ultrahomogeneous graphs without triangles,J. Combinatorial Theory (B),27 (1979), 168–179.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cameron, P.J. Normal subgroups of infinite multiply transitive permutation groups. Combinatorica 1, 343–347 (1981). https://doi.org/10.1007/BF02579455

Download citation

AMS subject classification (1980)

  • 20 B 20