Longest paths in digraphs


In this paper, we give a sufficient condition on the degrees of the vertices of a digraph to insure the existence of a path of given length, and we characterize the extremal graphs.

This is a preview of subscription content, access via your institution.


  1. [1]

    C. Berge, Graphs and hypergraphs, North Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  2. [2]

    J. C. Bermond, A. Germa, M. C. Heydemann andD. Sotteau, Chemins et circuits dans les graphes orientés, Proc. Coll. Montréal, 1979.Annals of Discrete Mathematics 8 (1980), 293–309.

    MATH  MathSciNet  Article  Google Scholar 

  3. [3]

    J. C. Bermond, On hamiltonian walks, Proc. 5th British Combinatorial Conference, Aberdeen, 1975,Congressus Numerantium 15,Utilitas Math. Publ., 41–51.

  4. [4]

    J. C. Bermond andC. Thomassen, Cycles in digraphs, a survey,J. Graph Theory,5 (1981), 1–43.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    A. Ghouila-Houri, Flots et tensions dans un graphe,Ann. Scien. Ec. Norm. Sup.,81 (1964), 317–327.

    MathSciNet  Google Scholar 

  6. [6]

    M. C. Heydemann,Thesis, Université Paris-Sud.

  7. [7]

    M. C. Heydemann, On cycles and paths in digraphs,Discrete Math. 31 (1980), 217–219.

    MATH  Article  MathSciNet  Google Scholar 

  8. [8]

    B. Jackson, Long paths and cycles in oriented graphs,J. Graph. Theory,5 (1981), 145–157,

    MATH  MathSciNet  Google Scholar 

  9. [9]

    M. Las Vergnas, Sur les arborescences dans un graphe orientéDiscrete Math. 15 (1976), 27–39.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    C. Thomassen, Long cycles in digraphs,Proc. London Math. Soc. to appear.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bermond, J.C., Germa, A., Heydemann, M.C. et al. Longest paths in digraphs. Combinatorica 1, 337–341 (1981). https://doi.org/10.1007/BF02579454

Download citation

AMS subject classification (1980)

  • 05 C 20
  • 05 C 38