Abstract
For a graphG withn vertices and average valencyt, Turán’s theorem yields the inequalityα≧n/(t+1) whereα denotes the maximum size of an independent set inG. We improve this bound for graphs containing no large cliques.
This is a preview of subscription content, access via your institution.
References
- [1]
M. Ajtai, J. Komlós, J. Pintz, J. Spencer andE. Szemerédi, Extremal uncrowded hypergraphs, in manuscript.
- [2]
M. Ajtai, J. Komlós andE. Szemerédi, A dense infinite Sidon sequence,European Journal of Combinatorics,2 (1981) 1–11.
- [3]
M. Ajtai, J. Komlós andE. Szemerédi, A note on Ramsey numbers,Journal of Combinatorial Theory A 29 (1980), 354–360.
- [4]
J. Komlós, J. Pintz andE. Szemerédi, A lower bound for Heilbronn’s problem,Journal of the London Math. Soc., to appear.
- [5]
J. Spencer, Turán’s theorem fork-graphs,Discrete Math. 2 (1972), 183–186.
- [6]
P. Turán, Egy gráfelméleti szélsőértékfeladatról,Mat. Fiz. Lapok 48 (1941), 436–452; see also:On the Theory of Graphs, Colloq. Math. 3 (1954), 19–30.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Ajtai, M., Erdős, P., Komlós, J. et al. On Turán’s theorem for sparse graphs. Combinatorica 1, 313–317 (1981). https://doi.org/10.1007/BF02579451
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 35
- 05 C 55