On switching paths polyhedra

Abstract

A class of integer polyhedra with totally dual integral (tdi) systems is proposed, which generalizes and unifies the “Switching Paths Polyhedra” of Hoffman (introduced in his generalization of Max Flow-Min Cut) and such polyhedra as the convex hull of (the incidence vectors of) all “path-closed sets” of an acyclic digraph, or the convex hull of all sets partitionable intok path-closed sets. As an application, new min-max theorems concerning the mentioned sets are given. A general lemma on when a tdi system of inequalities is box tdi is also given and used.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    K. B. Cameron, Polyhedral and algorithmic ramifications of antichainsPh. D. Thesis (1982) Univ. of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  2. [2]

    R. P. Dilworth, A decomposition theorem for partially ordered sets,Ann. of Math. 51 (1950), 161–166.

    Article  MathSciNet  Google Scholar 

  3. [3]

    J. Edmonds andR. Giles, A min-max relation for submodular functions on graphs, (in: Studies in Integer Programming),Ann. of Discrete Math. 1 (1977), 185–204.

    MathSciNet  Article  Google Scholar 

  4. [4]

    T. Gallai andA. N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von Rédei,Acta Sc. Math. 21 (1960), 181–186.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    C. Greene andD. Kleitman, The structure of Spernerk-families,J. Combinatorial Theory Ser. A 20 (1976), 80–88.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    H. Gröflin, Path-closed sets,Combinatorica 4 (1984), 281–290.

    MATH  MathSciNet  Google Scholar 

  7. [7]

    H. Gröflin andA. J. Hoffman, On matroid intersection,Combinatorica 1 (1981), 43–47.

    MATH  MathSciNet  Google Scholar 

  8. [8]

    H. Gröflin andA. J. Hoffman, Lattice polyhedra II: generalization, constructions and examples,Ann. of Discrete Math. 15 (1982), 189–203.

    MATH  Google Scholar 

  9. [9]

    A. J. Hoffman, A generalization of max flow-min cut,Mathematical Programming 6 (1974), 352–359.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    A. J. Hoffman andD. E. Schwartz, On partitions of a partially ordered set,J. Combinatorial Theory Ser. B 23 (1977), 3–13.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gröflin, H. On switching paths polyhedra. Combinatorica 7, 193–204 (1987). https://doi.org/10.1007/BF02579449

Download citation

AMS subject classification (1982)

  • 52 A 25
  • 90 C 05
  • 90 B 10
  • 05 C 20
  • 05 C 38