Abstract
The component structure of the most general random hypergraphs, with edges of differen sizes, is analyzed. We show that, as this is the case for random graphs, there is a “double jump” in the probable and almost sure size of the greatest component of hypergraphs, when the average vertex degree passes the value 1.
This is a preview of subscription content, access via your institution.
References
- [1]
M. Ajtai, J. Komlós andE. Szemerédi, The longest path in a random graph,Combinatorica,1 (1981), 1–12.
- [2]
C. Berge,Graphes et Hypergraphes, Dunod, Paris, (1970).
- [3]
C. Berge,Introduction à la Theorie des Hypergraphes, Le presse de l’Université de Montréal, Seminaire de Math. Superieur, été 1971.
- [4]
B. Bollobás andP. Erdős, Cliques in random graphs,Math. Proc. Camb. Phil. Soc.,80 (1976), 419–427.
- [5]
P. Erdős andA. Rényi, On the evolution of random graphs,Publ. of the Math. Inst. of the Hung. Acad. Sci.,5 (1960), 17–61.
- [6]
P. Erdős,The Art of Counting, Selected Writings, MIT Press, Cambridge/Massachusetts and London/England, 1973.
- [7]
P. Erdős andJ. Spencer,Probabilistic Methods in Combinatorics. Academic Press, New York, 1974.
- [8]
W. Fernandez de la Vega, Sur la cardinalité maximum des couplages d’hypergraphes aléatoire uniformes,Discrete Math. 40, (1982), 315–318.
- [9]
J. Schmidt andE. Shamir, A threshold for perfect matchings ind-pure random hypergraphs,Discrete Math.,45 (1983), 287–295.
- [10]
J. Schmidt-Pruzan, E. Shamir, andE. Upfal, Random hypergraph coloring algorithms and the weak chromatic number,Journal of Graph Theory (to appear), (Preliminary version: Technical Report (CS83-09) Dept. Appl. Math. Weizmann Inst. of Sc. Rehovot Israel).
- [11]
J. Schmidt-Pruzan, Probabilistic analysis of strong hypergraph coloring algorithms and the strong chromatic number.Submitted to Discrete Math., (Preliminary version: Technical Report (CS83-10) Dept. Appl. Math. Weizmann Inst. of Sc. Rehovot Israel).
- [12]
I. Tomescu, Asymptotical estimations for the number of cliques of uniform hypergraphs,Annals of Discrete Math.,11,Studies on graphs and Discrete Programming (1981), (Edited by P. Hansen), North-Holland Publishing Comp., 345–358.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Schmidt-Pruzan, J., Shamir, E. Component structure in the evolution of random hypergraphs. Combinatorica 5, 81–94 (1985). https://doi.org/10.1007/BF02579445
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 65
- 60 C 05