Linear verification for spanning trees

Abstract

Given a rooted tree with values associated with then vertices and a setA of directed paths (queries), we describe an algorithm which finds the maximum value of every one of the given paths, and which uses only

$$5n + n\log \frac{{\left| A \right| + n}}{n}$$

comparisons.

This leads to a spanning tree verification algorithm usingO(n+e) comparisons in a graph withn vertices ande edges.

No implementation is offered.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    D. Cheriton andR. E. Tarjan, Finding Minimum Spanning Trees,SIAM J. on Computing,5 (1976), 724–742.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    M. Fredman andR. E. Tarjan,private communication, December 1983.

  3. [3]

    R. L. Graham, A. C. Yao, andF. F. Yao, Information Bounds are Weak in the Shortest Distance Problem,JACM,27 (1980), 428- 444.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    D. Harel, A Linear Time Algorithm for the Lowest Common Ancestors Problem,Proc. 21st Annual Symp. on Foundations of Computer Science, (1980), 308–319.

  5. [5]

    R. E. Tarjan, Application of Path Compression on Balanced Trees,JACM,26 (1979), 690–715.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    A. C. Yao, AnO(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees,Information Processing Letters,4 (1975), 21–23.

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Komlós, J. Linear verification for spanning trees. Combinatorica 5, 57–65 (1985). https://doi.org/10.1007/BF02579443

Download citation

AMS subject classification (1980)

  • 68 F. 10