Abstract
It is shown that a 3-skein isomorphism between 3-connected graphs with at least 5 vertices is induced by an isomorphism. These graphs have no loops but may be infinite and have multiple edges.
This is a preview of subscription content, access via your institution.
References
- [1]
R. Halin andH. A. Jung, Note on isomorphisms of graphs,J. London Math. Soc. 42 (1967), 254–256.
- [2]
R. L. Hemminger, Isomorphism-induced line isomorphisms on pseudographs,Czechoslovak Math. J. (96) (1971), 672–679.
- [3]
R. L. Hemminger andH. A. Jung, Onn-skein Isomorphisms of Graphs,J. Combinatorial Theory (B),32 (1982), 103–111.
- [4]
H. A. Jung, Zu einem Isomorphiesatz von H. Whitney für Graphen,Math. Ann. 164 (1966), 270–271.
- [5]
J. H. Sanders andD. Sanders, Circuit preserving edge maps,J. Combinatorial Theory (B) 22 (1977), 91–96.
- [6]
H. Whitney, Congruent graphs and the connectivity of graphs,Amer. J. Math. 54 (1932), 150–168.
- [7]
H. Whitney, 2-isomorphic graphs,Amer. J. Math. 55 (1933), 245–254.
Author information
Affiliations
Additional information
The paper was written while this author was visiting Universität für Bildungswissenschaften, Klagenfurt, Austria.
Rights and permissions
About this article
Cite this article
Jung, H.A., Kelmans, A.K. & Hemminger, R.L. On 3-skein isomorphisms of graphs. Combinatorica 2, 373–376 (1982). https://doi.org/10.1007/BF02579433
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 40
- 05 C 38