On the vector space of 0-configurations


Let α be a rational-valued set-function on then-element sexX i.e. α(B) εQ for everyBX. We say that α defines a 0-configuration with respect toA⫅2x if for everyA εA we have\(\mathop \Sigma \limits_{A \subseteqq B \subseteqq X} \) α(B)=0. The 0-configurations form a vector space of dimension 2n − |A| (Theorem 1). Let 0 ≦t<kn and letA={AX: |A| ≦t}. We show that in this case the 0-configurations satisfying α(B)=0 for |B|>k form a vector space of dimension\(\mathop \Sigma \limits_{t< i \leqq k} \left( {\begin{array}{*{20}c} n \\ i \\ \end{array} } \right)\), we exhibit a basis for this space (Theorem 4). Also a result of Frankl, Wilson [3] is strengthened (Theorem 6).

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Deza, Problème de l’existence de (H 1;H 2,b)-hypergraphs,Cahiers du C. E. R. O. Bruxelles,17, 2–3–4, (1975) 185–190.

    MATH  MathSciNet  Google Scholar 

  2. [2]

    M. Deza, Isometries of hypergraphs, inProc. Symposium on Graph Theory (Calcutta, 1976), ISI Lecture Notes4, (ed. A. R. Rao), Mc Millan India, 1979, 174–189.

  3. [3]

    P. Frankl andR. M. Wilson, Intersection theorems with geometric consequences,Combinatorica 1 (1981), 357–368.

    MATH  MathSciNet  Google Scholar 

  4. [4]

    R. L. Graham, S-Y. R. Li andW.-W. W. Li, On the structure oft-designs,SIAM J. Alg. Disc. Methods,1 (1980), 8–14.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    J. B. Graver andW. B. Jurkat, The module Structure of Integral Designs,Journal of Combinatorial Theory A15 (1973), 75–90.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    D. K. Ray-Chaudhuri andR. M. Wilson, Ont-designs,Osaka J. Math. 12 (1975), 737–744.

    MATH  MathSciNet  Google Scholar 

  7. [7]

    N. M. Singhi,personal communication, 1981.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deza, M., Frankl, P. On the vector space of 0-configurations. Combinatorica 2, 341–345 (1982). https://doi.org/10.1007/BF02579430

Download citation

AMS subject classification (1980)

  • 05 C 65
  • 05 C 35
  • 15 A 03