A parity digraph has a kernel

Abstract

We show that every digraph has a kernel (i.e. an absorbing and independent set) under the following parity condition: For every pair of verticesx, y x ≠ y all minimal directed paths betweenx andy have the same length parity.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    C. Berge,Graphes et Hypergraphes, Dunot 1970.

  2. [2]

    M. Blidia, Kernels in parity graphs with an orientation condition, to appear.

  3. [3]

    P. Duchet, Graphes noyaux parfaits,Ann. Disc. Math. 9 (1980) 93–102.

    MATH  MathSciNet  Article  Google Scholar 

  4. [4]

    H. Galeana-Sanchez, A theorem about a conjecture of H. Meyniel on kernel perfect graph,Universidad Nacional A de Mexico.

  5. [5]

    H. Meyniel, Contribution à l’étude de quelques problèmes en théorie des graphes (Circuits hamiltoniens, coloration, noyaux),Thèse Paris VI (1982).

  6. [6]

    V. Neumann-Lara, Seminucleos de une digrafica,Annales del Instituto de Matematicas 11 (1971),Universidad Nacional A de Mexico.

  7. [7]

    J. Von Neumann andO. Morgenstern,Theory of games and economic behavior, Princeton University Press, Princeton 1944.

    MATH  Google Scholar 

  8. [8]

    M. Richardson, Solutions of irreflexive relations,Annals of Math. 58 (1953), 573–580.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blidia, M. A parity digraph has a kernel. Combinatorica 6, 23–27 (1986). https://doi.org/10.1007/BF02579405

Download citation

AMS subject classification (1980)

  • 05 C 20