Abstract
We show that every digraph has a kernel (i.e. an absorbing and independent set) under the following parity condition: For every pair of verticesx, y x ≠ y all minimal directed paths betweenx andy have the same length parity.
This is a preview of subscription content, access via your institution.
References
- [1]
C. Berge,Graphes et Hypergraphes, Dunot 1970.
- [2]
M. Blidia, Kernels in parity graphs with an orientation condition, to appear.
- [3]
P. Duchet, Graphes noyaux parfaits,Ann. Disc. Math. 9 (1980) 93–102.
- [4]
H. Galeana-Sanchez, A theorem about a conjecture of H. Meyniel on kernel perfect graph,Universidad Nacional A de Mexico.
- [5]
H. Meyniel, Contribution à l’étude de quelques problèmes en théorie des graphes (Circuits hamiltoniens, coloration, noyaux),Thèse Paris VI (1982).
- [6]
V. Neumann-Lara, Seminucleos de une digrafica,Annales del Instituto de Matematicas 11 (1971),Universidad Nacional A de Mexico.
- [7]
J. Von Neumann andO. Morgenstern,Theory of games and economic behavior, Princeton University Press, Princeton 1944.
- [8]
M. Richardson, Solutions of irreflexive relations,Annals of Math. 58 (1953), 573–580.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Blidia, M. A parity digraph has a kernel. Combinatorica 6, 23–27 (1986). https://doi.org/10.1007/BF02579405
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 20