Orthogonal vectors in then-dimensional cube and codes with missing distances


Fork a positive integer letm(4k) denote the maximum number of ±1-vectors of length 4k so that no two are orthogonal. Equivalently,m(4k) is the maximal number of codewords in a code of length 4k over an alphabet of size two, such that no two codewords have Hamming distance 2k. It is proved thatm(4k)=4\(\sum\limits_{0 \leqq i< k} {\left( {\begin{array}{*{20}c} {4k - 1} \\ i \\ \end{array} } \right)} \) ifk is the power of an odd prime.

This is a preview of subscription content, log in to check access.


  1. [1]

    Ph. Delsarte, On the four principal parameters of a code,Information and Control23 (1973), 407–438.

    Article  MathSciNet  MATH  Google Scholar 

  2. [2]

    P. Frankl andV. Rödl, Forbidden intersections,Transactions AMS, to appear.

  3. [3]

    P. Frankl andR. M. Wilson, Intersection theorems with geometric consequences,Combinatorica1 (1981), 357–368.

    MATH  MathSciNet  Google Scholar 

  4. [4]

    H. Hadwiger, Überdeckungssätze für den Euklidischen Raum,Portugaliae Math.4 (1944), 140–144.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    N. Ito, Hadamard graphs,Graphs and Combinatorics1 (1985), 57–64.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    D. G. Larman andC. A. Rogers, The realization of distances within sets in euclidean space,Mathematika19 (1972), 1–24.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    H. Enomoto, P. Frankl, N. Ito, andK. Nomura, Bounds on the size of code: with given distances,Graphs and Combinatorics, to appear.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frankl, P. Orthogonal vectors in then-dimensional cube and codes with missing distances. Combinatorica 6, 279–285 (1986). https://doi.org/10.1007/BF02579389

Download citation

AMS subject classification (1980)

  • 05 C 35