Abstract
A graph is said to have propertyP k if in eachk-colouring ofG using allk colours there arek independent vertices having all colours. An (unpublished) suggestion of P. Erdős is answered in the affirmative: For eachk≧3 there is a k-critical graph withP k . With the aid of a construction of T. Gallaik-chromatic graphs (k≧7) withP k orP k+1 of arbitrarily high connectivity are obtained. The main result is: Eachk-chromatic graph (k≧3) of girth ≧6 hasP k or is a circuit of length 7.
This is a preview of subscription content, access via your institution.
References
- [1]
W. G. Brown andJ. W. Moon, Sur les ensembles de sommets, indépendant dans les graphs chromatiques minimaux,Canad. J. Math. 21 (1969), 274–278.
- [2]
G. A. Dirac, Circuits in critical graphs,Monatsh. Math. 59 (1955), 178–187.
- [3]
P. Erdős, Graph theory and probability,Canad. J. Math. 11 (1959), 34–38.
- [4]
U. Krusenstjerna-Hafstrøm andB. Toft, Some remarks on Hadwiger’s conjecture and its relation to a conjecture of Lovász, in:The Theory and Applications of Graphs. (Ed. G. Chartrand), 1981, John Wiley Inc., 449–459.
- [5]
L. Lovász, On chromatic number of finite set systems,Acta Math. Acad. Sci. Hung. 19 (1968), 59–67.
- [6]
L. Lovász, Independent sets in critical chromatic graphs,Studia Sci. Math. Hung. 8 (1973), 165–168.
- [7]
O. Ore,The Four Color Problem, Academic Press, 1967.
- [8]
V. Rödl andZ. Tuza, On colour critical graphs,submitted to Combin. Theory B.
- [9]
H. Sachs, „Einführung in die Theorie der endlichen Graphen“, Teil I, Teubner, Leipzig, 1970).
- [10]
M. Simonovits, On colour-critical graphs,Studia Sci. Math. Hung. 7 (1972), 67–81.
- [11]
H.-J. Voss, Independent sets in (k+1)-colorations ofk-chromatic graphs,Wiss. Z. TH Ilmenau 30 (1984), 27–40.
- [12]
H.-J. Voss, Unabhängige Mengen ink-chromatischen Graphen,Tagungsberichte des 2. Kol. über Geometrie und Kombinatorik, Karl-Marx-Stadt, 13–14. 10. 1983.
Author information
Affiliations
Additional information
Dedicated to Paul Erdős on his seventieth birthday
Rights and permissions
About this article
Cite this article
Voss, H.J. Independent sets ink-chromatic graphs. Combinatorica 5, 261–269 (1985). https://doi.org/10.1007/BF02579371
Received:
Revised:
Issue Date:
AMS subject classification (1980)
- 05 C 15