Independent sets ink-chromatic graphs

Abstract

A graph is said to have propertyP k if in eachk-colouring ofG using allk colours there arek independent vertices having all colours. An (unpublished) suggestion of P. Erdős is answered in the affirmative: For eachk≧3 there is a k-critical graph withP k . With the aid of a construction of T. Gallaik-chromatic graphs (k≧7) withP k orP k+1 of arbitrarily high connectivity are obtained. The main result is: Eachk-chromatic graph (k≧3) of girth ≧6 hasP k or is a circuit of length 7.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    W. G. Brown andJ. W. Moon, Sur les ensembles de sommets, indépendant dans les graphs chromatiques minimaux,Canad. J. Math. 21 (1969), 274–278.

    MATH  MathSciNet  Google Scholar 

  2. [2]

    G. A. Dirac, Circuits in critical graphs,Monatsh. Math. 59 (1955), 178–187.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    P. Erdős, Graph theory and probability,Canad. J. Math. 11 (1959), 34–38.

    MathSciNet  Google Scholar 

  4. [4]

    U. Krusenstjerna-Hafstrøm andB. Toft, Some remarks on Hadwiger’s conjecture and its relation to a conjecture of Lovász, in:The Theory and Applications of Graphs. (Ed. G. Chartrand), 1981, John Wiley Inc., 449–459.

  5. [5]

    L. Lovász, On chromatic number of finite set systems,Acta Math. Acad. Sci. Hung. 19 (1968), 59–67.

    MATH  Article  Google Scholar 

  6. [6]

    L. Lovász, Independent sets in critical chromatic graphs,Studia Sci. Math. Hung. 8 (1973), 165–168.

    Google Scholar 

  7. [7]

    O. Ore,The Four Color Problem, Academic Press, 1967.

  8. [8]

    V. Rödl andZ. Tuza, On colour critical graphs,submitted to Combin. Theory B.

  9. [9]

    H. Sachs, „Einführung in die Theorie der endlichen Graphen“, Teil I, Teubner, Leipzig, 1970).

    Google Scholar 

  10. [10]

    M. Simonovits, On colour-critical graphs,Studia Sci. Math. Hung. 7 (1972), 67–81.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    H.-J. Voss, Independent sets in (k+1)-colorations ofk-chromatic graphs,Wiss. Z. TH Ilmenau 30 (1984), 27–40.

    MATH  MathSciNet  Google Scholar 

  12. [12]

    H.-J. Voss, Unabhängige Mengen ink-chromatischen Graphen,Tagungsberichte des 2. Kol. über Geometrie und Kombinatorik, Karl-Marx-Stadt, 13–14. 10. 1983.

Download references

Author information

Affiliations

Authors

Additional information

Dedicated to Paul Erdős on his seventieth birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Voss, H.J. Independent sets ink-chromatic graphs. Combinatorica 5, 261–269 (1985). https://doi.org/10.1007/BF02579371

Download citation

AMS subject classification (1980)

  • 05 C 15