A strongly polynomial minimum cost circulation algorithm

Abstract

A new algorithm is presented for the minimum cost circulation problem. The algorithm is strongly polynomial, that is, the number of arithmetic operations is polynomial in the number of nodes, and is independent of both costs and capacities.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R. P. Anstee, A polynomial algorithm forb-matching: an alternative approach,Research Report CORR 83–22, University Waterloo, Waterloo, Ontario, 1983.

    Google Scholar 

  2. [2]

    W. H. Cunningham andA. Frank, A primal dual algorithm for submodular flows;Mathematics of Operations Research,10 (1985), 251–262.

    MATH  MathSciNet  Google Scholar 

  3. [3]

    E. A. Dinits, Algorithm for solution of a problem of maximum flow in a network with power estimation;Soviet Math. Dokl.,11 (1970), 1277–1280.

    MATH  Google Scholar 

  4. [4]

    J. Edmonds, Systems of distinct representatives and linear algebra;J. Res. Nat. Bur. Standards,71 B (1967), 241–245.

    MathSciNet  Google Scholar 

  5. [5]

    J. Edmonds, Submodular functions, matroids and certain polyhedra, in:Combinatorial Structures and Applications, (R. K. Guy et al. eds.) 1970 Gordon and Breach, New York 67–87.

    Google Scholar 

  6. [6]

    J. Edmonds andR. Giles, A min-max relation for submodular functions on graphs,Annals of Discrete Math. 1 (1977), 185–204.

    MathSciNet  Article  Google Scholar 

  7. [7]

    J. Edmonds andR. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems,J. ACM 19 (1972), 248–264.

    MATH  Article  Google Scholar 

  8. [8]

    L. R. Ford, jr. andD. R. Fulkerson,Flows in Networks, Princeton University Press, Princeton N. J., 1962.

    Google Scholar 

  9. [9]

    D. R. Fulkerson, An Out-of-Kilter method for minimal cost flow problems,J. Soc. Indust. Appl. Math. 9 (1961), 18–27.

    MATH  Article  Google Scholar 

  10. [10]

    A. K. Lenstra, H. W. Lenstra, jr. andL. Lovász, Factoring polynomials with rational coefficients,Math. Ann. 261 (1982), 515–534.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    C. L. Lucchesi andD. H. Younger, A minimax theorem for directed graphs,J. London Math. Soc. 17 (1978), 368–374.

    Article  MathSciNet  Google Scholar 

  12. [12]

    N. Megiddo, Towards a genuinely polynomial algorithm for linear programming,SIAM J. Comput. 12 (1981), 347–353.

    Article  MathSciNet  Google Scholar 

  13. [13]

    G. J. Minty, Monotone Networks,Proc. Roy. Soc. London, Ser. A,257 (1960), 194–212.

    MATH  MathSciNet  Article  Google Scholar 

  14. [14]

    H. Röck, Scaling techniques for minimal cost network flows, in:Discrete Structures and Algorithms, (U. Page ed.) 1980, Carl Hanser, München, 181–191.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tardos, É. A strongly polynomial minimum cost circulation algorithm. Combinatorica 5, 247–255 (1985). https://doi.org/10.1007/BF02579369

Download citation

AMS subject classification (1980)

  • 68 E 10
  • 68 C 25