How many atoms can be defined by boxes?


We study the functionb(n, d), the maximal number of atoms defined byn d-dimensional boxes, i.e. parallelopipeds in thed-dimensional Euclidean space with sides parallel to the coordinate axes.

We characterize extremal interval families definingb(n, 1)=2n-1 atoms and we show thatb(n, 2)=2n 2-6n+7.

We prove that for everyd,\(b^* (d) = \mathop {\lim }\limits_{n \to \infty } b(n,d)/n^d \) exists and\(1 \leqq (d/2)\sqrt[d]{{b^* (d)}} \leqq e\).

Moreover, we obtainb*(3)=8/9.

This is a preview of subscription content, access via your institution.


  1. [1]

    D. R. Fulkerson andO. A. Gross, Incidence matrices with the consecutive l’s property,Bull. Amer. Math. Soc. 70 (1964), 681–684.

    MATH  MathSciNet  Article  Google Scholar 

  2. [2]

    M. C. Golumbic,Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980.

  3. [3]

    B. Grünbaum,Arrangements and spreads, Amer. Math. Soc., Providence, 1972.

    Google Scholar 

  4. [4]

    A. Gyárfás, J. Lehel andZs. Tuza, The structure of rectangle families dividing the plane into maximal number of atoms,Discrete Mathematics 52 (1984), 177–198.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    R. Rado, Atoms of families of sets,Combinatorica 2 (1982), 311–314.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gyárfás, A., Lehel, J. & Tuza, Z. How many atoms can be defined by boxes?. Combinatorica 5, 193–204 (1985).

Download citation

AMS subject classification (1980)

  • 51 M 05
  • 52 A 20