How many random edges make a graph hamiltonian?


A threshold for a graph propertyQ in the scale of random graph spacesG n,p is ap-band across which the asymptotic probability ofQ jumps from 0 to 1. We locate a sharp threshold for the property of having a hamiltonian path.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Ajtai, J. Komlós andE. Szemerédi, The longest path in a random graph,Combinatorica 1 (1981), 1–12.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    D. Angluin andL. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matching,J. Comp. System Sci. 18 (1979), 155–193.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    B. Bollobás,Graph Theory, an Introductory Course, Springer, North-Holland, (1979).

    Google Scholar 

  4. [4]

    P. Erdős,The Art of Counting—Selected Writing (J. Spencer, Ed.), The M.I.T. Press, Cambridge (1973).

    Google Scholar 

  5. [5]

    P. Erdős andA. Rényi, On the strength of connectedness in random graphs,Acta Math. Acad. Sci. Hung. 12 (1961) 261–267.

    Article  Google Scholar 

  6. [6]

    P. Erdős, R. M. Karp andJ. Spencer, Personal communication.

  7. [7]

    W. Feller,An Introduction to Probability Theory and its Applications I., Wiley N. Y. (1957).

  8. [8]

    R. M. Karp, The Probabilistic analysis of some combinatorical search algorithms,Algorithms and Complexity (J. F. Traub, Ed.) Academic Press N. Y. (1976).

  9. [9]

    A. D. Koršunov, Solution of a Problem of Erdős and Rényi on Hamiltonian cycles,Soviet Math. Dokl. 17 (1976), 760–764.

    Google Scholar 

  10. [10]

    L. Pósa, Hamiltonian circuits in random graphs.Discrete Math. 14 (1976), 359–364.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    J. H. Reif andP. G. Spirakis, Random matroids, 12annual ACM Symp. on Theory of Computing (1980), 385–397.

  12. [12]

    E. Shamir andE. Upfal, On factors in random graphs,Israel J. of Math. 39, 4 (1981), 296–302.

    MATH  MathSciNet  Google Scholar 

  13. [13]

    E. Shamir andE. Upfal, Large regular factors in random graphs,Annals of Disc. Math. (1982), to appear.

  14. [14]

    E. Shamir, Stochastic analysis of extension rotation algorithms. Submitted to 14annual ACM symp. on Theory of Computing, (1982).

  15. [15]

    E. Shamir andE. Upfal, One factor in random graphs based on vertex-choice,Discrete Math. 41 (1982), 281–286.

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    T. I. Fenner andA. M. Frieze, On the existence of Hamiltonian cycles in a class of random graps,to appear.

  17. [17]

    J. Komlós andE. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph,Discrete Math. 43 (1983), 55–63.

    MATH  Article  MathSciNet  Google Scholar 

  18. [18]

    B. Bollobás, Almost all regular graphs are Hamiltonian,to appear.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shamir, E. How many random edges make a graph hamiltonian?. Combinatorica 3, 123–131 (1983).

Download citation

AMS subject classification (1980)

  • 60 C 05