How many random edges make a graph hamiltonian?

Abstract

A threshold for a graph propertyQ in the scale of random graph spacesG n,p is ap-band across which the asymptotic probability ofQ jumps from 0 to 1. We locate a sharp threshold for the property of having a hamiltonian path.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Ajtai, J. Komlós andE. Szemerédi, The longest path in a random graph,Combinatorica 1 (1981), 1–12.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    D. Angluin andL. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matching,J. Comp. System Sci. 18 (1979), 155–193.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    B. Bollobás,Graph Theory, an Introductory Course, Springer, North-Holland, (1979).

    Google Scholar 

  4. [4]

    P. Erdős,The Art of Counting—Selected Writing (J. Spencer, Ed.), The M.I.T. Press, Cambridge (1973).

    Google Scholar 

  5. [5]

    P. Erdős andA. Rényi, On the strength of connectedness in random graphs,Acta Math. Acad. Sci. Hung. 12 (1961) 261–267.

    Article  Google Scholar 

  6. [6]

    P. Erdős, R. M. Karp andJ. Spencer, Personal communication.

  7. [7]

    W. Feller,An Introduction to Probability Theory and its Applications I., Wiley N. Y. (1957).

  8. [8]

    R. M. Karp, The Probabilistic analysis of some combinatorical search algorithms,Algorithms and Complexity (J. F. Traub, Ed.) Academic Press N. Y. (1976).

  9. [9]

    A. D. Koršunov, Solution of a Problem of Erdős and Rényi on Hamiltonian cycles,Soviet Math. Dokl. 17 (1976), 760–764.

    Google Scholar 

  10. [10]

    L. Pósa, Hamiltonian circuits in random graphs.Discrete Math. 14 (1976), 359–364.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    J. H. Reif andP. G. Spirakis, Random matroids, 12annual ACM Symp. on Theory of Computing (1980), 385–397.

  12. [12]

    E. Shamir andE. Upfal, On factors in random graphs,Israel J. of Math. 39, 4 (1981), 296–302.

    MATH  MathSciNet  Google Scholar 

  13. [13]

    E. Shamir andE. Upfal, Large regular factors in random graphs,Annals of Disc. Math. (1982), to appear.

  14. [14]

    E. Shamir, Stochastic analysis of extension rotation algorithms. Submitted to 14annual ACM symp. on Theory of Computing, (1982).

  15. [15]

    E. Shamir andE. Upfal, One factor in random graphs based on vertex-choice,Discrete Math. 41 (1982), 281–286.

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    T. I. Fenner andA. M. Frieze, On the existence of Hamiltonian cycles in a class of random graps,to appear.

  17. [17]

    J. Komlós andE. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph,Discrete Math. 43 (1983), 55–63.

    MATH  Article  MathSciNet  Google Scholar 

  18. [18]

    B. Bollobás, Almost all regular graphs are Hamiltonian,to appear.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shamir, E. How many random edges make a graph hamiltonian?. Combinatorica 3, 123–131 (1983). https://doi.org/10.1007/BF02579348

Download citation

AMS subject classification (1980)

  • 60 C 05