Ear-decompositions of matching-covered graphs


We call a graphmatching-covered if every line belongs to a perfect matching. We study the technique of “ear-decompositions” of such graphs. We prove that a non-bipartite matching-covered graph containsK 4 orK 2K 3 (the triangular prism). Using this result, we give new characterizations of those graphs whose matching and covering numbers are equal. We apply these results to the theory of τ-critical graphs.

This is a preview of subscription content, access via your institution.


  1. [1]

    B. Andrásfai, On critical graphs, in:Theory of Graphs, Dunod, Paris—Gordon and Breach, New York, (1967) 9–19.

    Google Scholar 

  2. [2]

    C. Berge, Regularizable graphs I–II,Discrete Math. 23 (1978) 85–89 and 91–95.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    R. W. Deming, Independence numbers of graphs — an extension of the König—Egerváry theorem,Discrete Math. 27 (1979) 23–33.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    J. Edmonds, Paths, trees and flowers,Can. J. Math. 17 (1965) 449–467.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    P. Erdős andT. Gallai, On the minimal number of vertices representing the edges of a graph,Publ. Math. Inst. Hung. Acad. Sci. 4 (1961) 181–205.

    Google Scholar 

  6. [6]

    T. Gallai, Maximale Systeme unabhängiger Kanten,Publ. Math. Inst. Hung. Acad. Sci. 9 (1965) 401–413.

    MathSciNet  Google Scholar 

  7. [7]

    A. Hajnal, Onk-saturated graphs,Can. J. Math. 17 (1965) 720–724.

    MATH  MathSciNet  Google Scholar 

  8. [8]

    D. J. Hartfield, A simplified form for nearly reducible and nearly decomposable matrices,Proc. Amer. Math. Soc. 24 (1970) 388–393.

    Article  MathSciNet  Google Scholar 

  9. [9]

    G. Hetyei, 2×1-es téglalapokkal lefedhető idomokról,Pécsi Tanárképző Főiskola Tud. Kőzl. (1964) 351–368.

  10. [10]

    A. Kotzig, Ein Beitrag zur Theorie der endlichen Graphen I–II–III,Mat. Fyz. Casopis 9 (1959) 73–91, 136–159, and10 (1960) 205–215.

    MATH  Google Scholar 

  11. [11]

    D. König, Vonalrendszerek és determinánsok,Mat. Term. Ért. 33 (1915) 221–229.

    Google Scholar 

  12. [12]

    G. H. C. Little, A theorem on connected praphs in which every edge belongs to a 1-factor,J. Austral. Math. Soc. 18 (1974) 450–452.

    MATH  MathSciNet  Article  Google Scholar 

  13. [13]

    L. Lovász, On the structure of factorizable graphs,Acta Math. Acad. Sci. Hung. 23 (1972) 179–195.

    MATH  Article  Google Scholar 

  14. [14]

    L. Lovász, Some finite basis theorems an graph theory, in:Combinatorics (ed. A. Hajnal and V. T. Sós), Nort-Holland, 1978, 717–729.

  15. [15]

    L. Lovász andM. D. Plummer, On bicritical graphs, in:Infinite and Finite sets, (ed. A. Hajnal, R. Rado and V. T. Sós) North-Holland, 1975, 1051–1979.

  16. [16]

    L. Lovász andM. D. Plummer, On minimal elementary bipartite graphs,J. Comb. Theory B 23 (1977) 127–138.

    MATH  Article  Google Scholar 

  17. [17]

    D. Naddef, Rank of maximum matchings in a graph,Math. Programming (1981).

  18. [18]

    D. Naddef, andW. R. Pulleyblank, Ear decomposition of elementary graphs andGF 2-rank of perfect matchings,preprint (1981).

  19. [19]

    M. D. Plummer, Onn-extendable graphs,Discrete Math. 31 (1980) 201–210.

    MATH  Article  MathSciNet  Google Scholar 

  20. [20]

    F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number,preprint.

  21. [21]

    L. Surányi, On line-critical graphs, in:Infinite and Finite Sets (ed. A. Hajnal, R. Rado and V. T. Sós), North-Holland (1975) 1411–1444.

  22. [22]

    W. T. Tutte, The 1-factors of oriented graphs,Proc. Amer. Math. Soc. 4 (1953) 922–931.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Additional information

Dedicated to Tibor Gallai on his seventieth birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lovász, L. Ear-decompositions of matching-covered graphs. Combinatorica 3, 105–117 (1983). https://doi.org/10.1007/BF02579346

Download citation

AMS subject classification (1980)

  • 05 C 99