More results on Ramsey—Turán type problems


The paper deals with common generalizations of classical results of Ramsey and Turán. The following is one of the main results. Assumek≧2, ε>0,G n is a sequence of graphs ofn-vertices and at least 1/2((3k−5) / (3k−2)+ε)n 2 edges, and the size of the largest independent set inG n iso(n). LetH be any graph of arboricity at mostk. Then there exists ann 0 such that allG n withn>n 0 contain a copy ofH. This result is best possible in caseH=K 2k .

This is a preview of subscription content, access via your institution.


  1. [1]

    B. Bollobás andP. Erdős, On a Ramsey—Turán type problem.J. C. T. (B) 21 (1976), 166–168.

    MATH  Article  Google Scholar 

  2. [2]

    W. Brown andM. Simonovits, Preprint.

  3. [3]

    P. Erdős, Graph Theory and Probability,Canadian J. Math. Journal of Mathematics 11 (1959), 34–38.

    Google Scholar 

  4. [4]

    P. Erdős andVera T. Sós, Some remarks on Ramsey’s and Turán’s theorem.Coll. Math. Soc. J. Bolyai,4.Comb. Theory and its Appl., North-Holland (1969), 395–404.

    Google Scholar 

  5. [5]

    P. Erdős andVera T. Sós, Problems and results on Ramsey—Turán type theorems,Proc. West Coast Conf. on Combinatorics, Graph Th. and Computing, Humboldt State Univ. Arcata (1979), 17–23.

  6. [6]

    P. Erdős andVera T. Sós, Problems and results on Ramsey—Turán type theorems II,Studia Sci. Math. Hung. 14 (1979), 27–36.

    Google Scholar 

  7. [7]

    P. Erdoős andA. H. Stone, On the structure of linear graphs,Bull. Amer. Math. Soc. 52 (1946), 1087–1091.

    MathSciNet  Article  Google Scholar 

  8. [8]

    J. Gillis, Note on a property of measurable sets,J. London Math. Soc. 11 (1936), 139–141.

    MATH  Article  Google Scholar 

  9. [9]

    Vera T. Sós, On extremal problems in graph theory,Comb. structures and their appl. Proc. Calgary International Conference, Calgary (1969), 407–410.

  10. [10]

    E. Szemerédi, Graphs without complete quadrilaterals (in Hungarian),Mat. Lapok 23 (1973), 113–116.

    Google Scholar 

  11. [11]

    E. Szemerédi, On sets containing nok elements in arithmetic progression,Acta Arithmetica 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  12. [12]

    E. Szemerédi, Regular partitions of graphs,Coll. internat. C. N. R. S. 260 Probl. Combin. et Th. Graphes (1978), 399–402.

    Google Scholar 

  13. [13]

    A. A. Zykov, On some properties of linear complexes (in Russian),Mat. Sbornik, N. S. 24 (1949), 163–188, andAmer. Math. Soc. Trans. 79 (1952).

    MathSciNet  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erdős, P., Hajnal, A., Sós, V.T. et al. More results on Ramsey—Turán type problems. Combinatorica 3, 69–81 (1983).

Download citation

AMS subject classification (1980)

  • 05 C 55
  • 05 C 35