The nonexistence of 8-transitive graphs

Abstract

We prove that the inequalitys≦7 holds for finites-transitive graphs assuming that the list of known 2-transitive permutation groups is complete.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Bürker andW. Knapp, Zur Vermutung von Sims über primitive Permutationsgruppen II,Arch. Math. 27 (1976), 352–359.

    MATH  Article  Google Scholar 

  2. [2]

    P. J. Cameron, Finite permutation groups and finite simple groups,Bull. London Math. Soc. 13 (1981), 1–22.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    P. J. Cameron, Suborbits in transitive permutation groups, in:Combinatorics, part 3, M. Hall, Jr. and J. H. van Lint (eds.),Mathematical Centre Tracts 57, Amsterdam, 1974.

  4. [4]

    U. Dempwolff, A factorization lemma and an application,Arch. Math. 27 (1976), 18–21 and 476–479.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    A. Gardiner, Arc transitivity in graphs,Quat. J. Math. Oxford (2) 24 (1973), 399–407.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    A. Gardiner, Arc transitivity in graphs II,Quat. J. Math. Oxford (2) 25 (1974), 163–167.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    A. Gardiner, Doubly primitive vertex stabilizers in graphs,Math. Z. 135 (1974), 157–166.

    Article  MathSciNet  Google Scholar 

  8. [8]

    A. Gardiner, Symmetry conditions in graphs, in:Surveys in Combinatorics, B. Bollobàs (ed.),London Math. Soc. Lecture Note Series 38, Cambridge University Press, Cambridge, 1979.

    Google Scholar 

  9. [9]

    W. T. Tutte,Connectivity in Graphs, University of Toronto Press, Toronto, 1966.

    Google Scholar 

  10. [10]

    R. Weiss, Groups with a (B, N)-pair and locally transitive graphs,Nagoya Math. J. 74 (1979), 1–21.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    R. Weiss, A geometric classification of certain groups of Lie type,Europ. J. Comb. 1 (1980), 271–282.

    MATH  Google Scholar 

  12. [12]

    R. Weiss, Über symmetrische Graphen und die projektiven Gruppen,Arch. Math. 28 (1977), 110–112.

    Article  Google Scholar 

  13. [13]

    R. Weiss, An application ofp-factorization methods to symmetric graphs,Math. Proc. Cambridge Phil. Soc. 85 (1979), 43–48.

    MATH  Article  Google Scholar 

  14. [14]

    R. Weiss, Permutation groups with projective unitary subconstituents,Proc. Amer. Math. Soc. 78 (1980), 157–161.

    MATH  Article  MathSciNet  Google Scholar 

  15. [15]

    R. Weiss, Elations of graphs,Acta Math. Acad. Sci. Hungar. 34 (1979), 101–103.

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    R. Weiss,s-Transitive graphs, in:Algebraic Methods in Graph Theory (L. Lovász and V. T. Sós, eds)Coll. Math. Soc. J. Bolyai 25, Bolyai-North-Holland 1981, 827–847.

  17. [17]

    H. Wielandt,Finite Permutation Groups, Academic Press, New York-London, 1964.

    Google Scholar 

  18. [18]

    K. Zsigmondy, Zur Theorie der Potenzreste,Monatsh. Math. Phys. 3 (1892), 265–284.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weiss, R. The nonexistence of 8-transitive graphs. Combinatorica 1, 309–311 (1981). https://doi.org/10.1007/BF02579337

Download citation

AMS subject classification (1980)

  • 20 B 25
  • 05 C 25
  • 20 D 25