Partition conditions and vertex-connectivity of graphs


It was proved ([5], [6]) that ifG is ann-vertex-connected graph then for any vertex sequencev 1, ...,v n V(G) and for any sequence of positive integersk 1, ...,k n such thatk 1+...+k n =|V(G)|, there exists ann-partition ofV(G) such that this partition separates the verticesv 1, ...,v(n), and the class of the partition containingv i induces a connected subgraph consisting ofk i vertices, fori=1, 2, ...,n. Now fix the integersk 1, ...,k n . In this paper we study what can we say about the vertex-connectivity ofG if there exists such a partition ofV(G) for any sequence of verticesv 1, ...,v n V(G). We find some interesting cases when the existence of such partitions implies then-vertex-connectivity ofG, in the other cases we give sharp lower bounds for the vertex-connectivity ofG.

This is a preview of subscription content, access via your institution.


  1. [1]

    G. A. Dirac, Extensions of Menger’s theorem,J. London Math. Soc. 38 (1963), 148–161.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    A. Frank, Problem session,Proceedings of the Fifth British Combinatorial Conference, 1975., Aberdeen.

  3. [3]

    A. Frank, Combinatorial algorithms, algorithmic proofs,doctoral dissertation, 1975 (in Hungarian).

  4. [4]

    A. C. Green, Connectedness and classification of certain graphs,J. Combinatorial Th. B 24 (1978), 267–285.

    MATH  Article  Google Scholar 

  5. [5]

    E. Győri, On division of graphs to connected subgraphs,Combinatorics (Proc. Fifth Hungarian Combinatorial Coll., 1976., Keszthely) 485–494, Bolyai — North-Holland, 1978.

  6. [6]

    L. Lovász, A homology theory for spanning trees of a graph,Acta Math. Acad. Sci. Hungar. 30 (1977), 241–251.

    Article  MathSciNet  Google Scholar 

  7. [7]

    S. B. Maurer, Problem Session,Proc. Fifth British Combinatorial Conf., 1975., Aberdeen.

  8. [8]

    K. Menger, Zur allgemeinen Kurventheorie,Fund. Math.,10 (1926), 96.

    Google Scholar 

  9. [9]

    D. M. Mesner andM. E. Watkins, Some theorems aboutn-vertex-connected graphs,J. Math. Mech. 16 (1966), 321–326.

    MATH  MathSciNet  Google Scholar 

  10. [10]

    K. R. Milliken, Partitioning 3-connected graphs into 3 connected subgraphs, 1976.,unpublished manuscript.

  11. [11]

    O. Ore,Theory of graphs, Amer. Math. Soc., Providence, Rhode Island, 1962.

    MATH  Google Scholar 

  12. [12]

    H. Whitney, Congruent graphs and the connectivity of graphs,Amer. J. Math. 54 (1932), 150–168.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Győri, E. Partition conditions and vertex-connectivity of graphs. Combinatorica 1, 263–273 (1981).

Download citation

AMS subject classification (1980)

  • 05 C 40