Every large set of equidistant (0, +1, −1)-vectors forms a sunflower


A theorem of Deza asserts that ifH 1, ...,H m ares-sets any pair of which intersects in exactlyd elements and ifms 2s+2, then theH i form aΔ-system, i.e.\(\left| {\bigcap\limits_{i = 1}^m {H_i } } \right| = d\). In other words, every large equidistant (0, 1)-code of constant weight is trivial. We give a (0, +1, −1) analogue of this theorem.

This is a preview of subscription content, access via your institution.


  1. [1]

    P. Delsarte, J-M. Goethals andJ. J. Seidel, Spherical codes and designs,Geometriae Dedicata6 (1977) 363–368.

    MATH  MathSciNet  Article  Google Scholar 

  2. [2]

    M. Deza, Une propriété extrémale des plans projectifs finis dans une classe de codes equidistants,Discrete Math.6 (1973) 343–352.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    M. Deza, R. C. Mullin andS. A. Vanstone, Recent results on (r, λ)-designs and related configurations,to appear.

  4. [4]

    A. V. Geramita andJ. Seberry,Orthogonal designs, Marcel Dekker Inc., New York and Basel, 1979.

    Google Scholar 

  5. [5]

    A. J. Hoffman, private communication.

  6. [6]

    J. H. van Lint, A theorem on equidistant codes,Discrete Math.6 (1973) 353–358.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    I. J. Schoenberg, Metric spaces and positive definite functions,Trans. Amer. Math. Soc.44 (1938) 522–536.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deza, M., Frankl, P. Every large set of equidistant (0, +1, −1)-vectors forms a sunflower. Combinatorica 1, 225–231 (1981). https://doi.org/10.1007/BF02579328

Download citation

AMS subject classification (1980)

  • 05 C 65
  • 05 C 35, 05 B 25