A note on the girth of digraphs


Behzad, Chartrand and Wall conjectured that the girth of a diregular graph of ordern and outdegreer is not greater than [n /r]. This conjecture has been proved forr=2 by Behzad and forr=3 by Bermond. We prove that a digraph of ordern and halfdegree ≧4 has girth not exceeding [n / 4]. We also obtain short proofs of the above results. Our method is an application of the theory of connectivity of digraphs.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Behzad, G. Chartrand andC. Wall, On minimal regular digraphs with given girth,Fund. Math. 69 (1970), 227–231.

    MATH  MathSciNet  Google Scholar 

  2. [2]

    M. Behzad, Miminally 2-regular digraphs with given girth,J. Math. Soc. of Japan 25 (1973), 1–6.

    MATH  MathSciNet  Article  Google Scholar 

  3. [3]

    C. Berge,Graphes et hypergraphes, Dunod, Paris (1970).

    Google Scholar 

  4. [4]

    J. C. Bermond, 1-graphes réguliers de girth donné,Cahiers du C.E.R.O. Bruxelles 17 (1975), 123–135.

    Google Scholar 

  5. [5]

    L. Caccetta andR. Häggkvist, On minimal digraphs with given girth,Congressus numerantium XXI, Utilitas Mathematica, Boca Raton (1978), 181–187.

  6. [6]

    G. A. Dirac, Extensions of Menger’s theorem,J. Lond. Math. Soc. 38 (1963), 148–161.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    Y. O. Hamidoune, Sur les atomes d’un graphe orienté, C. R. Acad. Sc. Paris A284 (1977), 1253–1256.

  8. [8]

    Y. O. Hamidoune, An application of connectivity theory in graphs to factorizations of elements in finite groups,Europ. Journal of Comb. 2 (1981), 349–355.

    MATH  MathSciNet  Google Scholar 

  9. [9]

    W. Mader, Eine Eigenschaft der Atome endlicher Graphen,Arch. Math. 22 (1971), 333–336.

    Article  MathSciNet  Google Scholar 

  10. [10]

    K. Menger, Zur allgemeinen Kurventheorie,Fundamenta Math. 1 (1927), 96–115.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamidoune, Y.O. A note on the girth of digraphs. Combinatorica 2, 143–147 (1982). https://doi.org/10.1007/BF02579312

Download citation

AMS subject classification (1980)

  • 05 C 20
  • 05 C 38
  • 05 C 35
  • 05 C 40