A problem of Erdős on abelian groups


The following theorem is proved. Ifa 1,a 2, ...a n are nonzero elements inZ n , and are not all equal, then ε1 a 12 a 2+...+ε n a n =0 has at leastn solutions with ε i =0 or 1.

This is a preview of subscription content, access via your institution.


  1. [1]

    R. B. Eggleton andP. Erdős, Two combinatorial problems in group theory,Acta Arith.21 (1972), 111–116.

    MATH  MathSciNet  Google Scholar 

  2. [2]

    P. Erdős andR. L. Graham,Old and New Results in Combinatorial Number Theory, Monographie No. 28 de L’Enseignement Mathématique, Genève, 1980.

    Google Scholar 

  3. [3]

    J. E. Olson, A combinatorial problem on finite Abelian groups, II,J. Number Theory 1 (1969), 195–199.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olson, J.E. A problem of Erdős on abelian groups. Combinatorica 7, 285–289 (1987). https://doi.org/10.1007/BF02579305

Download citation

AMS subject classification (1980)

  • 20 K 01
  • 10 B 05