Expose-and-merge exploration and the chromatic number of a random graph

Abstract

The expose-and-merge paradigm for exploring random graphs is presented. An algorithm of complexityn O(logn) is described and used to show that the chromatic number of a random graph for any edge probability 0<p<1 falls in the interval

$$\left[ {\left( {\frac{1}{2} - \varepsilon } \right)\log (1/(1 - p))\frac{n}{{\log n}}, \left( {\frac{2}{3} + \varepsilon } \right)\log (1/(1 - p))\frac{n}{{\log n}}} \right]$$

with probability approaching unity asn→∞.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    B. Bollobás andP. Erdős, Cliques in random graphs,Math. Proc. Camb. Phil. Soc. 80, (1976), 419–427.

    MATH  Article  Google Scholar 

  2. [2]

    B. Bollobás,Random Graphs, Academic Press, London, 1985.

    Google Scholar 

  3. [3]

    P. Erdős andT. Spencer,Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.

    Google Scholar 

  4. [4]

    W. Feller,An Introduction to Probability Theory and its Applications, 3rd Ed., Wiley, New York, 1968.

    Google Scholar 

  5. [5]

    G. R. Grimmett andC. J. H. McDiarmid, On coloring random graphs,Math. Proc. Camb. Phil. Soc. 77, (1975), 313–324.

    MATH  MathSciNet  Google Scholar 

  6. [6]

    A. Johri andD. W. Matula, Probabilistic bounds and heuristic algorithms for coloring large random graphs,Tech. Rep. 82-CSE-6, Southern Meth. Univ., Dallas, (1982).

    Google Scholar 

  7. [7]

    A. D. Korshunov, The chromatic number ofn-vertex graphs,Metody Diskret. Analiz. No. 35 (1980), 14–44 (in Russian).

    Google Scholar 

  8. [8]

    D. W. Matula, The employee party problem,Not. A. M. S. 19, (1972), A-382.

  9. [9]

    D. W. Matula, The largest clique size in a random graph,Tech. Rep. CS7608, Southern Meth. Univ., Dallas, (1976).

    Google Scholar 

  10. [10]

    D. W. Matula, G. Marble andJ. D. Isaacson, Graph Coloring Algorithms, inGraph Theory and Computing, Read, R. C., ed., Academic Press, New York, 1972, 109–122.

    Google Scholar 

  11. [11]

    C. J. H. McDiarmid, Colouring random graphs,Ann. Op. Res. 1, (1984), 183–200.

    Article  Google Scholar 

  12. [12]

    E. M. Palmer,Graphical Evolution — An Introduction to the Theory of Random Graphs, Wiely Interscience, New York, 1985.

    Google Scholar 

  13. [13]

    E. Shamir andJ. Spencer, Sharp Concentration of the Chromatic Number on Random GraphsG n,p ,Combinatorica 7 (1987), 121–129.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matula, D.W. Expose-and-merge exploration and the chromatic number of a random graph. Combinatorica 7, 275–284 (1987). https://doi.org/10.1007/BF02579304

Download citation

AMS subject classification (1980)

  • 05 c 80