Abstract
The expose-and-merge paradigm for exploring random graphs is presented. An algorithm of complexityn O(logn) is described and used to show that the chromatic number of a random graph for any edge probability 0<p<1 falls in the interval
with probability approaching unity asn→∞.
This is a preview of subscription content, access via your institution.
References
- [1]
B. Bollobás andP. Erdős, Cliques in random graphs,Math. Proc. Camb. Phil. Soc. 80, (1976), 419–427.
- [2]
B. Bollobás,Random Graphs, Academic Press, London, 1985.
- [3]
P. Erdős andT. Spencer,Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.
- [4]
W. Feller,An Introduction to Probability Theory and its Applications, 3rd Ed., Wiley, New York, 1968.
- [5]
G. R. Grimmett andC. J. H. McDiarmid, On coloring random graphs,Math. Proc. Camb. Phil. Soc. 77, (1975), 313–324.
- [6]
A. Johri andD. W. Matula, Probabilistic bounds and heuristic algorithms for coloring large random graphs,Tech. Rep. 82-CSE-6, Southern Meth. Univ., Dallas, (1982).
- [7]
A. D. Korshunov, The chromatic number ofn-vertex graphs,Metody Diskret. Analiz. No. 35 (1980), 14–44 (in Russian).
- [8]
D. W. Matula, The employee party problem,Not. A. M. S. 19, (1972), A-382.
- [9]
D. W. Matula, The largest clique size in a random graph,Tech. Rep. CS7608, Southern Meth. Univ., Dallas, (1976).
- [10]
D. W. Matula, G. Marble andJ. D. Isaacson, Graph Coloring Algorithms, inGraph Theory and Computing, Read, R. C., ed., Academic Press, New York, 1972, 109–122.
- [11]
C. J. H. McDiarmid, Colouring random graphs,Ann. Op. Res. 1, (1984), 183–200.
- [12]
E. M. Palmer,Graphical Evolution — An Introduction to the Theory of Random Graphs, Wiely Interscience, New York, 1985.
- [13]
E. Shamir andJ. Spencer, Sharp Concentration of the Chromatic Number on Random GraphsG n,p ,Combinatorica 7 (1987), 121–129.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Matula, D.W. Expose-and-merge exploration and the chromatic number of a random graph. Combinatorica 7, 275–284 (1987). https://doi.org/10.1007/BF02579304
Received:
Revised:
Issue Date:
AMS subject classification (1980)
- 05 c 80