On a problem of Erdős concerning property B

Abstract

A family ℱ of sets has propertyB if there exists a setS such thatSF≠0 andSF for everyF∈ℱ. ℱ has propertyB(s) if there exists a setS such that 0<|FS|<s for everyF∈ℱ. Denote bym(n) (respectivelym(n, s)) the size of a smallest family ofn-element sets not having propertyB (respectivelyB(s)). P. Erdős has asked whetherm(n, s)≧m (s) for allns. We show that, in general, this inequality does not hold.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. L. Abbott andA. Liu, On propertyB(s),Ars Combinatoria,7 (1979), 255–260.

    MATH  MathSciNet  Google Scholar 

  2. [2]

    H. L. Abbott andA. Liu, On propertyB(s) II,Discrete. Mathematics,37 (1981), 135–141.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    P. Aizley andJ. E. Selfridge,Notices, Amer. Math. Soc. 24 (1977), A-452.

    Google Scholar 

  4. [4]

    J. Beck, On 3-chromatic hypergraphs,Discrete Mathematics,24 (1978), 127–137.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    J. Spencer, Cloringn-sets red and blue,J. Combinatorial Theory, A,30 (1981), 112–113.

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abbott, H.L., Liu, A. On a problem of Erdős concerning property B. Combinatorica 7, 215–219 (1987). https://doi.org/10.1007/BF02579298

Download citation

AMS subject classification (1980)

  • 05 A 05