On unavoidable graphs

Abstract

How many edges can be in a graph which is forced to be contained in every graph onn vertices ande edges? In this paper we obtain bounds which are in many cases asymptotically best possible.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L. Babai, F. R. K. Chung, P. Erdős, R. L. Graham andJ. Spencer, On graphs which contain all sparse graphs,Annals of Discrete Math.,12 (1982), 21–26.

    MATH  Google Scholar 

  2. [2]

    F. R. K. Chung andR. L. Graham, On graphs which contain all small trees,J. Comb. Th. (B),24 (1978), 14–23.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    F. R. K. Chung, R. L. Graham andN. Pippenger, On graphs which contain all small trees II,Colloquia Math. Soc. János Bolyai, Keszthely, Hungary (1976), 213–223.

  4. [4]

    F. R. K. Chung andR. L. Graham, On universal graphs for spanning trees.Proc. of London Math. Soc. 27 (1983), 203–212.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    F. R. K. Chung andR. L. Graham, On universal graphs,Annals of the New York Academy of Sciences,319 (1970), 136–140.

    Article  MathSciNet  Google Scholar 

  6. [6]

    F. R. K. Chung, R. L. Graham andJ. Shearer, Universal caterpillars,J. Comb. Th. (B),31 (1981), 348–355.

    MATH  Article  Google Scholar 

  7. [7]

    F. R. K. Chung, R. L. Graham andD. Coppersmith, On trees which contain all small trees,The Theory and Applications of Graphs (ed. G. Chartrand) John Wiley and Sons, 1981, 265–272.

  8. [8]

    F. R. K. Chung, R. L. Graham andP. Erdős, Minimal decomposition of graphs into mutually isomorphic subgraphs, Combinatorica,1 (1981), 13–24.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    P. Erdős andJ. Spencer,Probabilistic Methods in Combinatorics, Akadémiai Kiadó, Budapest, 1974.

    Google Scholar 

  10. [10]

    P. Turán, Egy gráfelméleti szélsőértékfeladatról.Mat.-Fiz. Lapok 48 (1941), 436–452.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    P. Turán, On the theory of graphs,Coll. Math. 3 (1954), 19–30.

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, F.R.K., Erdős, P. On unavoidable graphs. Combinatorica 3, 167–176 (1983). https://doi.org/10.1007/BF02579290

Download citation

AMS subject classification (1980)

  • 05 C 35