Abstract
We show how to construct cubic graphs which have automorphism groups acting regularly on thes-arcs,s=4 or 5.
This is a preview of subscription content, access via your institution.
References
- [1]
N. L. Biggs,Algebraic Graph Theory, Cambridge, 1974.
- [2]
N. L. Biggs, Constructing 5-arc-transitive cubic graphs.J. London Math. Soc. 26 (1982) 193–200.
- [3]
B. Bollobás,Extremal Graph Theory, Academic Press, 1978.
- [4]
D. Z. Djokovic andG. L. Miller, Regular groups of automorphisms of cubis graphs,J. Combinatorial Theory (B) 29 (1980) 195–230.
- [5]
A. D. Gardiner, Arc transitivity in graphs III,Quart. J. Math. Oxford (2) 27 (1976) 313–323.
- [6]
B. Huppert,Endliche Gruppen I, Springer, 1967.
- [7]
M. Suzuki,Group Theory I, Springer, 1982.
- [8]
W. T. Tutte, A family of cubical graphs,Proc. Cambridge Philos. Soc. 43 (1947) 459–474.
- [9]
B. L. Van der Waerden,Algebra, vol. 1., Ungar—New York, (1970).
- [10]
W. J. Wong, Determination of a class of primitive permutation groupsMath. Z. 99 (1967) 235–246.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Biggs, N.L., Hoare, M.J. The sextet construction for cubic graphs. Combinatorica 3, 153–165 (1983). https://doi.org/10.1007/BF02579289
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 25