The sextet construction for cubic graphs

Abstract

We show how to construct cubic graphs which have automorphism groups acting regularly on thes-arcs,s=4 or 5.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. L. Biggs,Algebraic Graph Theory, Cambridge, 1974.

  2. [2]

    N. L. Biggs, Constructing 5-arc-transitive cubic graphs.J. London Math. Soc. 26 (1982) 193–200.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    B. Bollobás,Extremal Graph Theory, Academic Press, 1978.

  4. [4]

    D. Z. Djokovic andG. L. Miller, Regular groups of automorphisms of cubis graphs,J. Combinatorial Theory (B) 29 (1980) 195–230.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    A. D. Gardiner, Arc transitivity in graphs III,Quart. J. Math. Oxford (2) 27 (1976) 313–323.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    B. Huppert,Endliche Gruppen I, Springer, 1967.

  7. [7]

    M. Suzuki,Group Theory I, Springer, 1982.

  8. [8]

    W. T. Tutte, A family of cubical graphs,Proc. Cambridge Philos. Soc. 43 (1947) 459–474.

    MATH  MathSciNet  Article  Google Scholar 

  9. [9]

    B. L. Van der Waerden,Algebra, vol. 1., Ungar—New York, (1970).

  10. [10]

    W. J. Wong, Determination of a class of primitive permutation groupsMath. Z. 99 (1967) 235–246.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biggs, N.L., Hoare, M.J. The sextet construction for cubic graphs. Combinatorica 3, 153–165 (1983). https://doi.org/10.1007/BF02579289

Download citation

AMS subject classification (1980)

  • 05 C 25