, Volume 6, Issue 4, pp 309–314 | Cite as

Extremal clique coverings of complementary graphs

  • D. de Caen
  • P. Erdős
  • N. J. Pullmann
  • N. C. Wormald


Letcc(G) (resp. cp(G)) be the least number of complete subgraphs needed to cover (resp. partition) the edges of a graphG. We present bounds on max {cc(G)+cc(Ḡ)}, max {cp(G)+cp(Ḡ)}, max {cc(G)cc(Ḡ)} and max {cp(G)cp(Ḡ)} where the maxima are taken over all graphsG onn vertices and Ḡ is the complement ofG inK n . Several related open problems are also given.

AMS subject classification (1980)

05 C 35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. A. Bondy andU. S. R. Murty,Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.Google Scholar
  2. [2]
    P. Erdős, A. W. Goodman andL. Pósa, The Representation of a Graph by Set Intersections,Can. J. Math. 18 (1966), 106–112.Google Scholar
  3. [3]
    N. J. Pullman andA. Donald, Clique Coverings of Graphs II — Complements of Cliques,Utilitas Math. 19 (1981), 207–213.zbMATHMathSciNetGoogle Scholar
  4. [4]
    N. J. Pullman, H. Shank andW. D. Wallis, Clique Coverings of Graphs V — Maximal Clique Partitions,Bull. Austral. Math. Soc. 25 (1982), 337–356.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Taylor, R. D. Dutton andR. C. Brigham, Bounds on Nordhaus—Gaddum Type Bounds for Clique Cover Numbers,Congressus Num. 40 (1983), 388–398.MathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1986

Authors and Affiliations

  • D. de Caen
    • 1
  • P. Erdős
    • 2
  • N. J. Pullmann
    • 3
  • N. C. Wormald
    • 4
  1. 1.Northeastern Univ.BostonU.S.A.
  2. 2.Math. InstituteHungarian Acad. of SciencesBudapestHungary
  3. 3.Queen’s University KingstonOntarioCanada
  4. 4.Univ. of AucklandAucklandNew Zealand

Personalised recommendations