Abstract
We show that the Edmonds—Gallai decomposition theorem for matchings in finite graphs generalizes to all locally finite graphs.
This is a preview of subscription content, access via your institution.
References
- [1]
C. Berge, Sur le couplage maximum d’un graphe,C. R. Acad. Sci. Paris,247 (1958) 258–259.
- [2]
R. A. Brualdi, Matchings in arbitrary graphs,Proc. Camb. Phil. Soc.,69 (1971) 401–407.
- [3]
F. Bry, Sur les couplages dans les graphes localement finis, Coll. Int. sur la Théorie des Graphes et la Combinatoire Marseille-Luminy 1981,Ann. Discrete Math., to appear.
- [4]
J. Edmonds, Paths, trees and flowers,Canad. J. Math.,17 (1965) 449–467.
- [5]
J. Edmonds andD. R. Fulkerson, Transversals and matroid partitionJ. Res. Nat. Bur. Stand., ser. B,69 (1965) 147–153.
- [6]
T. Gallai, Maximale Systeme unabhängiger Kanten,Mat. Kut. Int. Közl.,9 (1964) 373–395.
- [7]
M. Las Vergnas, Degree-constrained subgraphs and matroid theory,in: Infinite and Finite Sets, Proc. Colloq. Math. Soc. J. Bolyai 10, (A. Hajnal, R. Rado and V. T. Sós, eds) Keszthely (Hungary) 1973, North-Holland 1976, pp. 1473–1502.
- [8]
L. Lovász, On the structure of factorizable graphs,Acta Math. Acad. Sci. Hung.,23 (1972) 179–185.
- [9]
P. J. McCarthy, Matchings in graphs II,Discrete Math. 11 (1975) 141–145.
- [10]
W. Mader, 1-Faktoren von Graphen,Math. Ann.,201 (1973) 269–282.
- [11]
O. Ore, Graphs and subgraphs,Trans. Amer. Math. Soc.,84 (1957) 109–137.
- [12]
J. Plesnik, Connectivity of regular graphs and the existence of 1-factor,Mat. Casopis,22 (1972) 310–318.
- [13]
W. T. Tutte, The factorization of linear graphs,J. London Math. Soc.,22 (1947) 107–111.
- [14]
W. T. Tutte, The factorization of locally finite graphs,Canad. J. Math.,2 (1950) 44–49.
- [15]
D. J. A. Welsh,Matroid Theory, Academic Press, 1976.
Author information
Affiliations
Additional information
Dedicated to Tibor Gallai on his seventieth birthday
C.N.R.S.
Rights and permissions
About this article
Cite this article
Bry, F., Las Vergnas, M. The edmonds—Gallai decomposition for matchings in locally finite graphs. Combinatorica 2, 229–235 (1982). https://doi.org/10.1007/BF02579231
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 99