Abstract
An explicit construction of Biggs and Hoare yields an infinite family of bipartite cubic graphs. We prove that the ordern and girthg of each of these graphs are related by log2 n<3/4·g+3/2.
This is a preview of subscription content, access via your institution.
References
- [1]
N. L. Biggs,Algebraic Graph Theory, Cambridge, 1974.
- [2]
N. L. Biggs andM. J. Hoare, The sextet construction for cubic graphs,Combinatorica 3 (1983), 153–165.
- [3]
B. Bollobás,Extremal Graph Theory, Academic Press, 1978.
- [4]
D. Z. Djoković andG. L. Miller, Regular groups of automorphisms of cubic graphs,J. Combinatorial Theory (B) 29 (1980) 195–230.
- [5]
P. Erdös, andH. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl.Wiss. Z. Univ. Halle—Wittenberg, Math.-Nat. R. 12 (1963), 251–258.
- [6]
I. Reiner,Maximal Orders, Academic Press, 1975.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Weiss, A. Girths of bipartite sextet graphs. Combinatorica 4, 241–245 (1984). https://doi.org/10.1007/BF02579225
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 38
- 05 C 25
- 05 B 25