Canonization theorems for finite affine and linear spaces

Abstract

In this paper we prove a canonical (i.e. unrestricted) version of the Graham—Leeb—Rothschild partition theorem for finite affine and linear spaces [3]. We also mention some other kind of canonization results for finite affine and linear spaces.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    W. Deuber andB. Voigt, Partitionseigenschaften endlicher affiner und projektiver Räume,Europ J. of Combin. 3 (1982), 329–340.

    MATH  MathSciNet  Google Scholar 

  2. [2]

    P. Erdös andR. Rado, A combinatorial theorem,J. London Math. Soc. 25 (1950), 249–255.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    R. L. Graham, K. Leeb andB. L. Rothschild, Ramsey’s theorem for a class of categories,Advances in Math. 8 (1972), 417–433.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    N. Hindman, Finite sums from sequences within cells of a partition ofN, J. Comb. Th. (A) 17 (1974), 1–11.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    K. Leeb,Vorlesungen über Pascaltheorie, Erlangen, 1973.

  6. [6]

    J. Nesetril, H. J. Prömel, V. Rödl andB. Voigt, Canonical ordering theorems, a first attempt,Suppl. ai Rend. del Circ. Matem. di Palermo serie II,2 (1982) 193–197.

    MATH  Google Scholar 

  7. [7]

    H. J. Prömel: Erdös—Szekeres’ monotone subsequence theorem for projective points andq-graphs,Ars Combinatorica 16-B (1983), 73–94.

    Google Scholar 

  8. [8]

    H. J. Prömel andB. Voigt, Canonical partition theorems for parameter sets,J. Comb. Th. (A). 35 (1983), 309–327.

    MATH  Article  Google Scholar 

  9. [9]

    A. D. Taylor, A canonical partition relation for finite subsets of ω,J. Comb. Th. (A) 21 (1976), 137–146.

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Voigt, B. Canonization theorems for finite affine and linear spaces. Combinatorica 4, 219–239 (1984). https://doi.org/10.1007/BF02579224

Download citation

AMS subject classification (1980)

  • 05 C 55
  • 15 A 03