Abstract
In this paper we prove a canonical (i.e. unrestricted) version of the Graham—Leeb—Rothschild partition theorem for finite affine and linear spaces [3]. We also mention some other kind of canonization results for finite affine and linear spaces.
This is a preview of subscription content, access via your institution.
References
- [1]
W. Deuber andB. Voigt, Partitionseigenschaften endlicher affiner und projektiver Räume,Europ J. of Combin. 3 (1982), 329–340.
- [2]
P. Erdös andR. Rado, A combinatorial theorem,J. London Math. Soc. 25 (1950), 249–255.
- [3]
R. L. Graham, K. Leeb andB. L. Rothschild, Ramsey’s theorem for a class of categories,Advances in Math. 8 (1972), 417–433.
- [4]
N. Hindman, Finite sums from sequences within cells of a partition ofN, J. Comb. Th. (A) 17 (1974), 1–11.
- [5]
K. Leeb,Vorlesungen über Pascaltheorie, Erlangen, 1973.
- [6]
J. Nesetril, H. J. Prömel, V. Rödl andB. Voigt, Canonical ordering theorems, a first attempt,Suppl. ai Rend. del Circ. Matem. di Palermo serie II,2 (1982) 193–197.
- [7]
H. J. Prömel: Erdös—Szekeres’ monotone subsequence theorem for projective points andq-graphs,Ars Combinatorica 16-B (1983), 73–94.
- [8]
H. J. Prömel andB. Voigt, Canonical partition theorems for parameter sets,J. Comb. Th. (A). 35 (1983), 309–327.
- [9]
A. D. Taylor, A canonical partition relation for finite subsets of ω,J. Comb. Th. (A) 21 (1976), 137–146.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Voigt, B. Canonization theorems for finite affine and linear spaces. Combinatorica 4, 219–239 (1984). https://doi.org/10.1007/BF02579224
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 55
- 15 A 03