Abstract
LetP be that partially ordered set whose elements are vectors x=(x 1, ...,x n ) withx i ε {0, ...,k} (i=1, ...,n) and in which the order is given byx≦y iffx i =y i orx i =0 for alli. LetN i (P)={x εP : |{j:x j ≠ 0}|=i}. A subsetF ofP is called an Erdös-Ko-Rado family, if for allx, y εF it holdsx ≮y, x ≯ y, and there exists az εN 1(P) such thatz≦x andz≦y. Let ℓ be the set of all vectorsf=(f 0, ...,f n ) for which there is an Erdös-Ko-Rado familyF inP such that |N i (P) ∩F|=f i (i=0, ...,n) and let 〈ℓ〉 be its convex closure in the (n+1)-dimensional Euclidean space. It is proved that fork≧2 (0, ..., 0) and\(\left( {0,...,0,\overbrace {i - component}^{\left( {\begin{array}{*{20}c} {n - 1} \\ {i - 1} \\ \end{array} } \right)}k^{i - 1} ,0,...,0} \right)\) (i=1, ...,n) are the vertices of 〈ℓ〉.
Similar content being viewed by others
References
K. Engel,Maximale h-Familien in endlichen Ordnungen, Hansel-Ordnungen und monotone Funktionen, Dissertation A, Wilh.-Pieck-Univ., Rostock, 1981.
P. Erdös, Chao Ko andR. Rado, Intersection theorems for systems of finite sets,Quart. J. Math. Oxford 12 (1961), 313–320.
P. L. Erdös, P. Frankl andG. O. H. Katona, Intersecting Sperner families and their convex hulls,Combinatorica 4 (1984), 21–34.
C. Greene, G. O. H. Katona andD. J. Kleitman, Extensions of the Erdös—Ko—Rado Theorem,Studies in Appl. Math. 55 (1976), 1–8.
H.-D. O. F. Gronau,Zur Theorie der extremalen Familien von Teilmengen einer endlichen Menge, Dissertation B, Wilh.-Pieck-Univ., Rostock, 1982.
W. N. Hsieh, Families of intersecting finite vector spaces,J. Combin. Theory Ser. A 18 (1975), 252–261.
K. Leeb, Salami-Taktik beim Quader-Packen,Arbeitsberichte des Instituts für Mathematische Maschinen und Datenverarbeitung (Informatik), Friedrich Alexander Universität Erlangen Nürnberg11, Nr. 5 (1978), 1–15.
N. Metropolis andG.-C. Rota, Combinatorial structure of the faces of then-cube,SIAM J. Appl. Math. 35 (1978), 689–694.
A. Moon, An analogue of the Erdös—Ko—Rado Theorem for the Hamming SchemesH(n, q),J. Combin. Theory Ser. A 32 (1982), 386–390.