Skip to main content
Log in

An Erdös-Ko-Rado theorem for the subcubes of a cube

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

LetP be that partially ordered set whose elements are vectors x=(x 1, ...,x n ) withx i ε {0, ...,k} (i=1, ...,n) and in which the order is given byxy iffx i =y i orx i =0 for alli. LetN i (P)={x εP : |{j:x j ≠ 0}|=i}. A subsetF ofP is called an Erdös-Ko-Rado family, if for allx, y εF it holdsxy, x ≯ y, and there exists az εN 1(P) such thatzx andzy. Let ℓ be the set of all vectorsf=(f 0, ...,f n ) for which there is an Erdös-Ko-Rado familyF inP such that |N i (P) ∩F|=f i (i=0, ...,n) and let 〈ℓ〉 be its convex closure in the (n+1)-dimensional Euclidean space. It is proved that fork≧2 (0, ..., 0) and\(\left( {0,...,0,\overbrace {i - component}^{\left( {\begin{array}{*{20}c} {n - 1} \\ {i - 1} \\ \end{array} } \right)}k^{i - 1} ,0,...,0} \right)\) (i=1, ...,n) are the vertices of 〈ℓ〉.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Engel,Maximale h-Familien in endlichen Ordnungen, Hansel-Ordnungen und monotone Funktionen, Dissertation A, Wilh.-Pieck-Univ., Rostock, 1981.

    Google Scholar 

  2. P. Erdös, Chao Ko andR. Rado, Intersection theorems for systems of finite sets,Quart. J. Math. Oxford 12 (1961), 313–320.

    Article  MATH  Google Scholar 

  3. P. L. Erdös, P. Frankl andG. O. H. Katona, Intersecting Sperner families and their convex hulls,Combinatorica 4 (1984), 21–34.

    MATH  MathSciNet  Google Scholar 

  4. C. Greene, G. O. H. Katona andD. J. Kleitman, Extensions of the Erdös—Ko—Rado Theorem,Studies in Appl. Math. 55 (1976), 1–8.

    MathSciNet  Google Scholar 

  5. H.-D. O. F. Gronau,Zur Theorie der extremalen Familien von Teilmengen einer endlichen Menge, Dissertation B, Wilh.-Pieck-Univ., Rostock, 1982.

    Google Scholar 

  6. W. N. Hsieh, Families of intersecting finite vector spaces,J. Combin. Theory Ser. A 18 (1975), 252–261.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Leeb, Salami-Taktik beim Quader-Packen,Arbeitsberichte des Instituts für Mathematische Maschinen und Datenverarbeitung (Informatik), Friedrich Alexander Universität Erlangen Nürnberg11, Nr. 5 (1978), 1–15.

    MathSciNet  Google Scholar 

  8. N. Metropolis andG.-C. Rota, Combinatorial structure of the faces of then-cube,SIAM J. Appl. Math. 35 (1978), 689–694.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Moon, An analogue of the Erdös—Ko—Rado Theorem for the Hamming SchemesH(n, q),J. Combin. Theory Ser. A 32 (1982), 386–390.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, K. An Erdös-Ko-Rado theorem for the subcubes of a cube. Combinatorica 4, 133–140 (1984). https://doi.org/10.1007/BF02579213

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579213

AMS subject classification (1980)

Navigation