A canonical restricted version of van der waerden’s theorem

Abstract

It is shown that there is a subsetS of integers containing no (k+1)-term arithmetic progression such that if the elements ofS are arbitrarily colored (any number of colors),S will contain ak-term arithmetic progression for which all of its terms have the same color, or all have distinct colors.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    W. Deuber, R. L. Graham, H.-J. Prömel andB. Voigt, A canonical partition theorem for equivalence relations on Zt.J. Comb. Thy., Ser. A,34 (1983), 331–339.

    MATH  Article  Google Scholar 

  2. [2]

    W. Deuber, H.-J. Prömel, B. Rothschild andB. Voigt, A restricted version of Hales—Jewett’s theorem, in:Finite and Infinite Sets (A. Hajnal, L. Lovász, and V. T. Sós, eds.) Coll. Math. Soc. János Bolyai 37 (1983), 231–246.

    Google Scholar 

  3. [3]

    W. Deuber andB. Voigt, Der Satz von van der Waerden über arithmetische Progressionen,Jber. d. Dt. Math.-Verein.,85 (1983), 66–85.

    MATH  MathSciNet  Google Scholar 

  4. [4]

    P. Erdős andR. L. Graham, Old and new problems and results in combinatorial number theory.Monographie no. 28,L’Enseignement Mathematique, Geneve, (1980).

  5. [5]

    R. L. Graham, B. L. Rothschild andJ. H. Spencer,Ramsey Theory. New York, John Wiley (1980).

    MATH  Google Scholar 

  6. [6]

    J. Nešetřil andV. Rödl, Van der Waerden Theorem for sequences of integers not containing an arithmetic progression ofk terms.Comm. Math. Univ. Carolina,17 (1976), 675–688.

    Google Scholar 

  7. [7]

    H.-J. Prömel andV. Rödl, An elementary proof of the canonizing version of Gallai—Witt’s theorem.J. Comb. Thy. Ser. A. 42 (1986), 144–149.

    MATH  Article  Google Scholar 

  8. [8]

    H.-J. Prömel andB. Voigt, Canonical partition theorems for parameter sets.J. Comb. Th. Ser. A,35 (1983), 309–327.

    MATH  Article  Google Scholar 

  9. [9]

    J. Spencer, Restricted Ramsey configurations,J. Comb. Thy. Ser. A,19 (1975), 278–286.

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prömel, H.J., Rothschild, B.L. A canonical restricted version of van der waerden’s theorem. Combinatorica 7, 115–119 (1987). https://doi.org/10.1007/BF02579207

Download citation

AMS subject classification (1980)

  • 05 C 55