Abstract
It is shown that there is a subsetS of integers containing no (k+1)-term arithmetic progression such that if the elements ofS are arbitrarily colored (any number of colors),S will contain ak-term arithmetic progression for which all of its terms have the same color, or all have distinct colors.
This is a preview of subscription content, access via your institution.
References
- [1]
W. Deuber, R. L. Graham, H.-J. Prömel andB. Voigt, A canonical partition theorem for equivalence relations on Zt.J. Comb. Thy., Ser. A,34 (1983), 331–339.
- [2]
W. Deuber, H.-J. Prömel, B. Rothschild andB. Voigt, A restricted version of Hales—Jewett’s theorem, in:Finite and Infinite Sets (A. Hajnal, L. Lovász, and V. T. Sós, eds.) Coll. Math. Soc. János Bolyai 37 (1983), 231–246.
- [3]
W. Deuber andB. Voigt, Der Satz von van der Waerden über arithmetische Progressionen,Jber. d. Dt. Math.-Verein.,85 (1983), 66–85.
- [4]
P. Erdős andR. L. Graham, Old and new problems and results in combinatorial number theory.Monographie no. 28,L’Enseignement Mathematique, Geneve, (1980).
- [5]
R. L. Graham, B. L. Rothschild andJ. H. Spencer,Ramsey Theory. New York, John Wiley (1980).
- [6]
J. Nešetřil andV. Rödl, Van der Waerden Theorem for sequences of integers not containing an arithmetic progression ofk terms.Comm. Math. Univ. Carolina,17 (1976), 675–688.
- [7]
H.-J. Prömel andV. Rödl, An elementary proof of the canonizing version of Gallai—Witt’s theorem.J. Comb. Thy. Ser. A. 42 (1986), 144–149.
- [8]
H.-J. Prömel andB. Voigt, Canonical partition theorems for parameter sets.J. Comb. Th. Ser. A,35 (1983), 309–327.
- [9]
J. Spencer, Restricted Ramsey configurations,J. Comb. Thy. Ser. A,19 (1975), 278–286.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Prömel, H.J., Rothschild, B.L. A canonical restricted version of van der waerden’s theorem. Combinatorica 7, 115–119 (1987). https://doi.org/10.1007/BF02579207
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 55