Computing the composition factors of a permutation group in polynomial time

Abstract

Given generators for a group of permutations, it is shown that generators for the subgroups in a composition series can be found in polynomial time. The procedure also yields permutation representations of the composition factors.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. V. Aho, E. Hopcroft andJ. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

    MATH  Google Scholar 

  2. [2]

    M. D. Atkinson, An algorithm for finding the blocks of a permutation group,Math. Comp.,29 (1975), 911–913.

    MATH  Article  Google Scholar 

  3. [3]

    L. Babai, Monte Carlo algorithms in graph isomorphism testing,Tech. Rep. 79-10, Dép. Math. et Stat., Univ. de Montréal, 1979.

  4. [4]

    L. Babai, E. M. Luks, andÁ. Seress, Permutation groups in NC,to appear in Proc. 19 th Ann, ACM Symp. on Theory of computing (1987).

  5. [5]

    L. Babai, W. M. Kantor andE. M. Luks, Computational complexity and the classification of finite simple groups,Proc. 24 th IEEE Symp. Found. Comp. Sci. (1983), 162–171.

  6. [6]

    P. Cameron, Finite permutation groups and finite simple groups,Bull. London Math. Soc. 13 (1981), 1–22.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    W. Feit andJ. G. Thompson, Solvability of groups of odd order,Pacific J. Math.,13 (1963), 775–1029.

    MATH  MathSciNet  Google Scholar 

  8. [8]

    M. Furst, J. Hopcroft andE. M. Luks, Polynomial-time algorithms for permutation groups,Proc. 21 st IEEE Symp. Found. Comp. Sci. (1980), 36–41.

  9. [9]

    C. M. Hoffman,Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Comp. Sci.,136, Springer, Berlin, 1982.

    Google Scholar 

  10. [10]

    W. M. Kantor, Sylow’s theorem in polynomial time,J. Comp. Syst. Sci.,30 (1985), 359–394.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    W. M. Kantor, Polynomial-time algorithms for finding elements of prime order and Sylow subgroups,J. Algorithms,6 (1985), 478–514.

    MATH  Article  MathSciNet  Google Scholar 

  12. [12]

    W. M. Kantor andD. E. Taylor, Polynomial-time versions of Sylow’s theorem,J. Algorithms, to appear.

  13. [13]

    E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time,J. Comp. Syst. Sci.,25 (1982), 42–65.

    MATH  Article  MathSciNet  Google Scholar 

  14. [14]

    E. M. Luks, The complexity of fixed valence graph isomorphism and the implications for general graph isomorphism,in preparation.

  15. [15]

    C. C. Sims, Computational methods in the study of permutation groups,in: Computational Problems in Abstract Algebra, (ed.: N. J. Leech), Pergamon, New York, 1970, 169–183.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Research supported by National Science Foundation Grants DCR-8403745 and DCR-8609491

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luks, E.M. Computing the composition factors of a permutation group in polynomial time. Combinatorica 7, 87–99 (1987). https://doi.org/10.1007/BF02579204

Download citation

AMS subject classification (1980)

  • 20-04
  • 68 C 05