A local characterization of the johnson scheme


Within the Johnson schemeI(m, d) we find the graphK(m, d) ofd-subsets of anm-set, two such adjacent when disjoint. Among all connected graphs,K(m, d) is characterized by the isomorphism type of its vertex neighborhoods providedm is sufficiently large compared tod.

This is a preview of subscription content, access via your institution.


  1. [1]

    A. Blokhuis andA. E. Brouwer, Locally 4-by-4 grid graphs,preprint.

  2. [2]

    E. Bannai andT. Ito,Algebraic Combinatorics I,Association Schemes, Benjamin/Cummings, 1984.

  3. [3]

    F. Buekenhout andX. Hubaut, Locally polar spaces and related rank three groups,J. Algebra,45 (1977), 391–434.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    J. I. Hall, On identifying PG (3, 2) and the complete 3-design on seven points,Annals of Discrete Mathematics,7 (1980), 131–141.

    MATH  MathSciNet  Article  Google Scholar 

  5. [5]

    J. I. Hall, Locally Petersen graphs,J. Graph Theory,4 (1980), 173–187.

    MATH  MathSciNet  Google Scholar 

  6. [6]

    J. I. Hall andE. E. Shult, Locally cotriangular graphs,Geometriae Dedicata,18 (1985), 113–159.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    A. Moon, The graphsG(n, k) of the Johnson schemes are unique forn≧20,J. Combin. Th., B,37 (1984), 173–188.

    MATH  Article  MathSciNet  Google Scholar 

  8. [8]

    A. Neumaier, Characterization of a class of distance regular graphs,J. Reine Angew. Math.,357 (1985), 182–192.

    MATH  MathSciNet  Google Scholar 

  9. [9]

    A. Schrijver, Vertex-critical subgraphs of Kneser graphs,Nieuw Archief voor Wisk.,26 (1978), 454–461.

    MATH  MathSciNet  Google Scholar 

Download references

Author information



Additional information

Partial support provided by NSF (USA), SERC (UK), ZWO (NL).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hall, J.I. A local characterization of the johnson scheme. Combinatorica 7, 77–85 (1987). https://doi.org/10.1007/BF02579203

Download citation

AMS subject classification (1980)

  • 05 B 30