Abstract
We show that each loopless 2k-regular undirected graph onn vertices has at least\(\left( {2^{ - k} \left( {_k^{2k} } \right)} \right)^n \) and at most\(\sqrt {\left( {_k^{2k} } \right)^n } \) eulerian orientations, and that, for each fixedk, these ground numbers are best possible.
This is a preview of subscription content, access via your institution.
References
- [1]
L. M. Brègman, Some properties of nonnegative matrices and their permanents,Soviet Math. Dokl. 14 (1973) 945–949 (English translation of:Dokl. Akad. Nauk SSSR 211 (1973) 27–30).
- [2]
G. P. Egorychev, Solution of Van der Waerden’s permanent conjecture,Advances in Math. 42 (1981) 299–305.
- [3]
P. Erdős andA. Rényi, On random matrices II,Studia Sci. Math. Hungar. 3 (1968) 459–464.
- [4]
D. I. Falikman, A proof of the Van der Waerden conjecture on the permanent of a doubly stochastic matrix.Mat. Zametki 29 (1981) 931–938 (Russian).
- [5]
D. E. Knuth, A permanent inequality,Amer. Math. Monthly 88 (1981) 731–740.
- [6]
J. H. van Lint, Notes on Egoritsjev’s proof of the Van der Waerden conjecture,Linear Algebra and Appl. 39 (1981) 1–8.
- [7]
H. Minc, Upper bounds for permanents of (0,1)-matrices,Bull. Amer. Math. Soc. 69 (1963) 789–791.
- [8]
A. Schrijver, A short proof of Minc’s conjecture,J. Combinatorial Theory (A) 25 (1978) 80–83.
- [9]
A. Schrijver andW. G. Valiant, On lower bounds for permanents,Indag. Math. 42 (1980) 425–427.
- [10]
M. Voorhoeve, A lower bound for the permanents of certain (0,1)-matrices,Indag. Math. 41 (1979) 83–86.
- [11]
B. L. van der Waerden, Aufgabe 45,Jahresber. Deutsch. Math.-Verein. 25 (1926) 117.
- [12]
H. S. Wilf, On the permanent of a doubly stochastic matrix,Canad. J. Math. 18 (1966) 758–761.
Author information
Affiliations
Additional information
Dedicated to Paul Erdős on his seventieth birthday
Rights and permissions
About this article
Cite this article
Schrijver, A. Bounds on the number of Eulerian orientations. Combinatorica 3, 375–380 (1983). https://doi.org/10.1007/BF02579193
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 45
- 05 C 30
- 15 A 15