Edge-colored complete graphs with precisely colored subgraphs

Abstract

Letf(s, t; k) be the largest value ofm such that it is possible tok-color the edges of the complete graphK m so that everyK s K m has exactlyt colors occuring on its edges. The main object of this paper is to describe the behavior of the functionf(s,t;k), usually thinking ofs andt fixed, and lettingk become large.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. A. Bondy andU. S. R. Murty,Graph Theory with Applications, Amer. Elsevier, New York 1976.

    Google Scholar 

  2. [2]

    T. A. Brown, (personal communication).

  3. [3]

    F. R. K. Chung andC. M. Grinstread, A survey of bounds for classical Ramsey numbers,J. Graph Th. 7 (1983), 25–38.

    MATH  Google Scholar 

  4. [4]

    P. Erdős, A. Hajnal, V. T. Sós andE. Szemerédi, More results on Ramsey—Turán type problems,Combinatorica 3 (1) (1983), 69–81.

    MathSciNet  Google Scholar 

  5. [5]

    P. Erdős andR. Radó, Combinatorial theorems on classifications of subsets of a given set,Proc. London Math. Soc. 2 (1952), 417–439.

    Article  MathSciNet  Google Scholar 

  6. [6]

    P. Erdős andV. T. Sós, Some remarks on Ramsey’s and Turán’s theorem,Combinatorial Theory and Its Applications, Colloq. Math. Soc. János Bolyai (1969), 395–404.

  7. [7]

    P. Erdős andE. Szemerédi, On a Ramsey type theorem,Per. Math. Hung. 2 (1972), 295–299.

    Article  Google Scholar 

  8. [8]

    R. L. Graham, Rudiments of Ramsey Theory,Amer. Math. Soc., Providence, 1981.

  9. [9]

    R. L. Graham, B. L. Rothschild andJ. H. Spencer, Ramsey Theory,John Wiley and Sons, New York, 1980.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Dedicated to Paul Erdős on his seventieth birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, F.R.K., Graham, R.L. Edge-colored complete graphs with precisely colored subgraphs. Combinatorica 3, 315–324 (1983). https://doi.org/10.1007/BF02579187

Download citation

AMS subject classification (1980)

  • 05 C 15