Abstract
A random graph with (1+ε)n/2 edges contains a path of lengthcn. A random directed graph with (1+ε)n edges contains a directed path of lengthcn. This settles a conjecture of Erdõs.
This is a preview of subscription content, access via your institution.
References
- [1]
P. Erdős andA. Rényi, On the evolution of random graphs,Publications of the Math. Inst. the Hung. Acad. of Sci.,5 (1960), 17–61.
- [2]
A. Rényi, Some remarks on the theory of trees,Publications of the Math. Inst. of the Hung. Acad. of Sci.,4 (1959), 73–85.
- [3]
W. F. de la Vega, Sur la plus grande longueur des chemins élémentaires de graphes aléatoires,Preprint of Laboratoire d’informatique pour les Sciences de l’Homme, C.N.R.S., 1979.
- [4]
P. Erdős, Problems and results on finite and infinite graphs, inProc. Symp. Prague 1974, Akademia Praha 1975.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Ajtai, M., Komlós, J. & Szemerédi, E. The longest path in a random graph. Combinatorica 1, 1–12 (1981). https://doi.org/10.1007/BF02579172
Received:
Issue Date:
AMS subject classification (1980)
- 05 C 38
- 60 C 05
- 60 J 80