An augmenting path algorithm for linear matroid parity

Abstract

Linear matroid parity generalizes matroid intersection and graph matching (and hence network flow, degree-constrained subgraphs, etc.). A polynomial algorithm was given by Lovász. This paper presents an algorithm that uses timeO(mn 3), wherem is the number of elements andn is the rank. (The time isO(mn 2.5) using fast matrix multiplication; both bounds assume the uniform cost model). For graphic matroids the time isO(mn 2). The algorithm is based on the method of augmenting paths used in the algorithms for all subcases of the problem.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Aigner,Combinatorial Theory, Springer Verlag, Berlin, 1979.

    Google Scholar 

  2. [2]

    A. V. Aho, J. E. Hopcroft andJ. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Ma., 1974.

    Google Scholar 

  3. [3]

    D. Coppersmith andS. Winograd, On the asymptotic complexity of matrix multiplication,SIAM J. Comput.,11 (1982), 472–492.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    J. Edmonds, Paths, trees and flowers,Canadian J. of Math.,17 (1965), 449–467.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    S. Even andO. Kariv, AnO(n 2.5) algorithm for maximum matching in general graphs,Proc. 16th Annual IEEE Symp. on Foundations of Computer Science, Berkeley, (1975), 100–112.

  6. [6]

    H. N. Gabow, Decomposing symmetric exchanges in matroid bases,Mathematical Programming 10 (1976), 271–276.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    H. N. Gabow, An efficient implementation of Edmonds’ algorithm for maximum matching on graphs,J. ACM 23 (1976), 221–234.

    MATH  Article  MathSciNet  Google Scholar 

  8. [8]

    H. N. Gabow andM. Stallmann, Scheduling multi-task jobs with deadlines on one processor,working paper.

  9. [9]

    H. N. Gabow andM. Stallmann, Efficient algorithms for graphic matroid intersection and parity,Automata, Languages and Programming;Lecture Notes in Computer Science 194, (W. Brauer, ed.), Springer-Verlag, New York, 1985, 210–220.

    Google Scholar 

  10. [10]

    H. N. Gabow andR. E. Tarjan, Efficient algorithms for a family of matroid intersection problems,J. Algorithms 5 (1984), 80–131.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    H. N. Gabow andR. E. Tarjan, A linear-time algorithm for a special case of disjoint set union,J. of Comp. and Sys. Sciences 30 (1985), 209–221.

    MATH  Article  MathSciNet  Google Scholar 

  12. [12]

    M. R. Garey andD. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

    Google Scholar 

  13. [13]

    P. Jensen andB. Korte, Complexity of matroid property algorithmsSIAM Journal on Computing,11 (1982), 184–190.

    MATH  Article  MathSciNet  Google Scholar 

  14. [14]

    S. Krogdahl, The dependence graph for bases in matroids,Discrete Mathematics 19 (1977), 47–59.

    MATH  Article  MathSciNet  Google Scholar 

  15. [15]

    E. L. Lawler, Matroids with parity conditions: a new class of combinatorial optimization problems,Electronics Research Laboratory, Berkeley, Memorandum Number ERL—M334 (1971).

  16. [16]

    E. L. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, San Francisco, 1976.

    Google Scholar 

  17. [17]

    L. Lovász, The matroid matching problem,Algebraic Methods in Graph Theory, Colloquia Mathematica Societatis János Bolyai, Szeged (Hungary), 1978.

    Google Scholar 

  18. [18]

    L. Lovász, Selecting independent lines from a family of lines in space,Acta Scientarium Mathematicarum,42 (1980), 121–131.

    MATH  Google Scholar 

  19. [19]

    L. Lovász, Matroid matching and some applications,J. Comb. Theory, B,28 (1980), 208–236.

    MATH  Article  Google Scholar 

  20. [20]

    S. Micali andV. V. Vazirani, AnO(√|V|·|E|) algorithm for finding maximum matching in general graphs,Proc. 20th Annual IEEE Symp. on Foundations of Computer Science, 1980, 17–27.

  21. [21]

    J. B. Orlin andJ. H. Vande Vate, An algorithm for the linear matroid parity problem,manuscript.

  22. [22]

    Po Tong, E. L. Lawler andV. V. Vazirani, Solving the weighted parity problem for gammoids by reduction to graphic matching,In: Combinatorial Optimization, (W. R. Pulleyblank, ed.), Academic Press, 1984, 363–374.

  23. [23]

    M. Stallmann,An Augmenting Paths Algorithm for the Matroid Parity Problem on Binary Matroids, Ph.D. Thesis, University of Colorado at Boulder, 1982.

  24. [24]

    R. E. Tarjan, Efficiency of a good but not linear set union algorithm,J. ACM 22 (1975), 215–225.

    MATH  Article  MathSciNet  Google Scholar 

  25. [25]

    R. E. Tarjan,Data Structures and Network Algorithms, SIAM, Philadelphia, PA., 1983.

    Google Scholar 

  26. [26]

    D. J. A. Welsh,Matroid Theory, Academic Press, New York, 1976.

    Google Scholar 

  27. [27]

    H. Whitney, On the abstract properties of linear dependence,American Journal of Mathematics,57 (1935), 509–533.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

First author was supported in part by the National Science Foundation under grants MCS 78-18909, MCS-8302648, and DCR-8511991. The research was done while the second author was at the University of Denver and at the University of Colorado at Boulder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gabow, H.N., Stallmann, M. An augmenting path algorithm for linear matroid parity. Combinatorica 6, 123–150 (1986). https://doi.org/10.1007/BF02579169

Download citation

AMS subject classification (1980)

  • 05 B 35
  • 68 C 05